

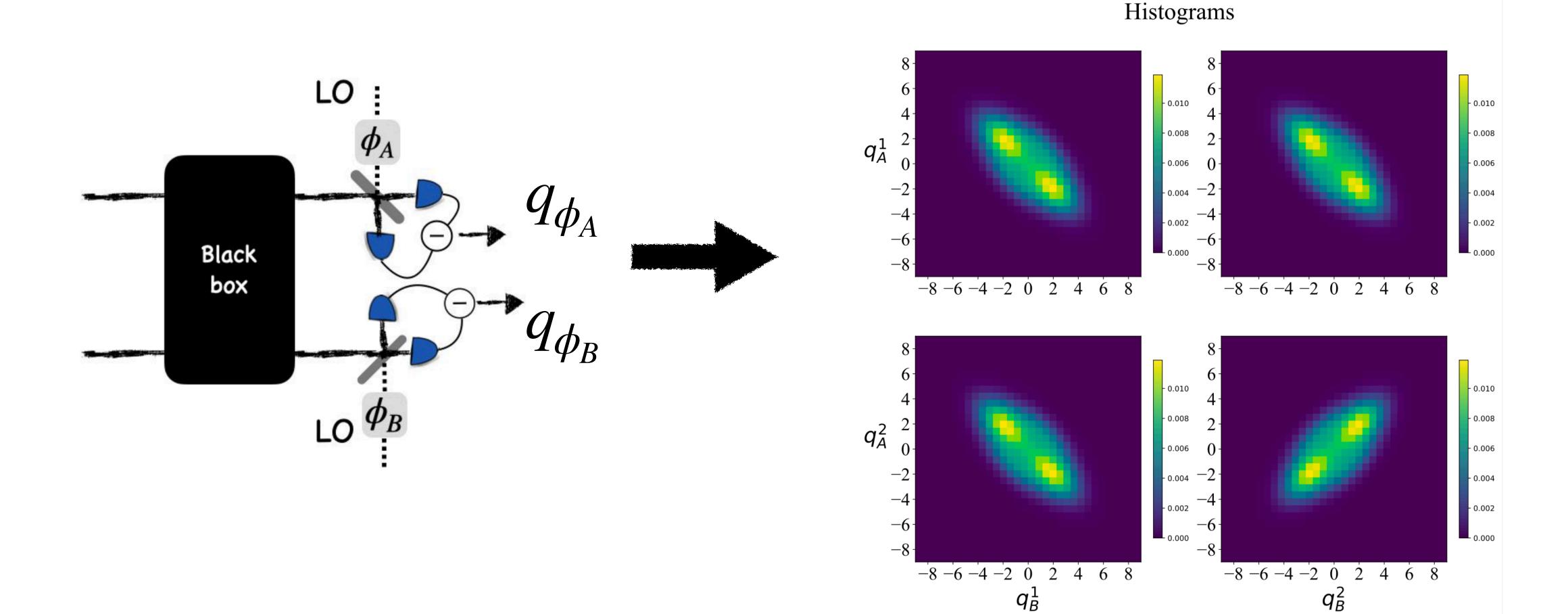
A general framework for (CV) Bell non-locality and contextuality

Carlos E. Lopetegui González

Joint work with: P.E. Emeriau, Ulysse Chabaud, Uta I. Meyer, Enky Oudot, Gael Masse, Frederic Grosshams, Damien Markham, Robert Booth, Federico Centrone and Mattia Walschaers

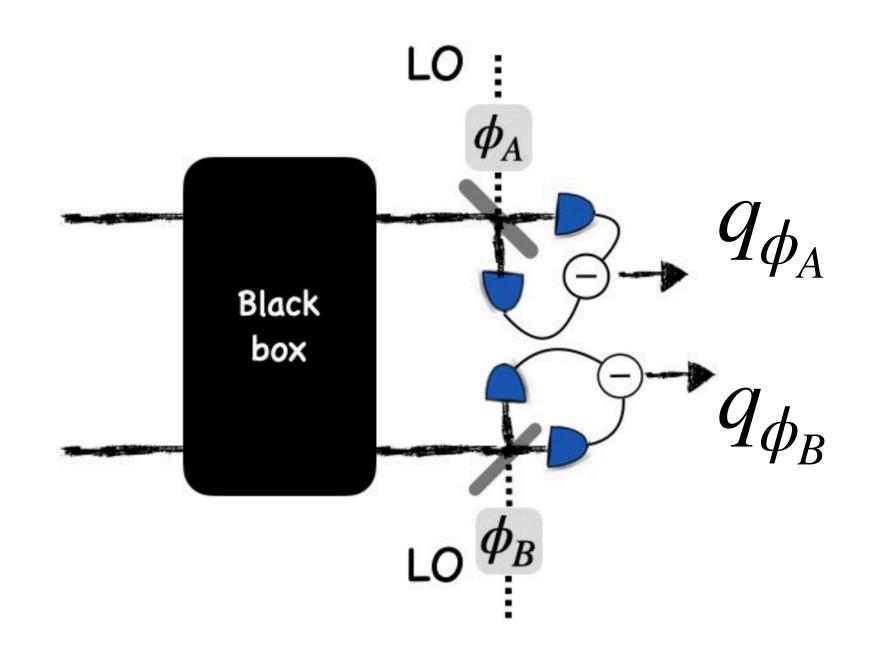
Objective:

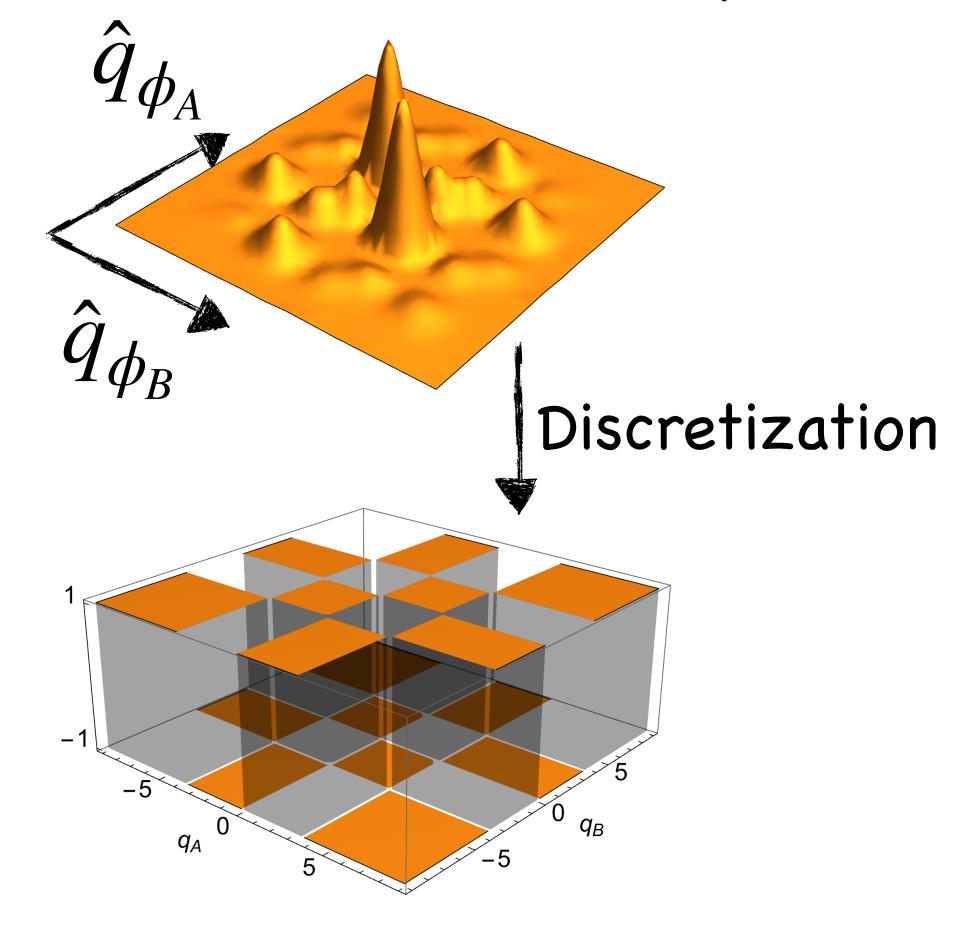
Obtain some genuinely CV and practically relevant Bell inequality



Objective:

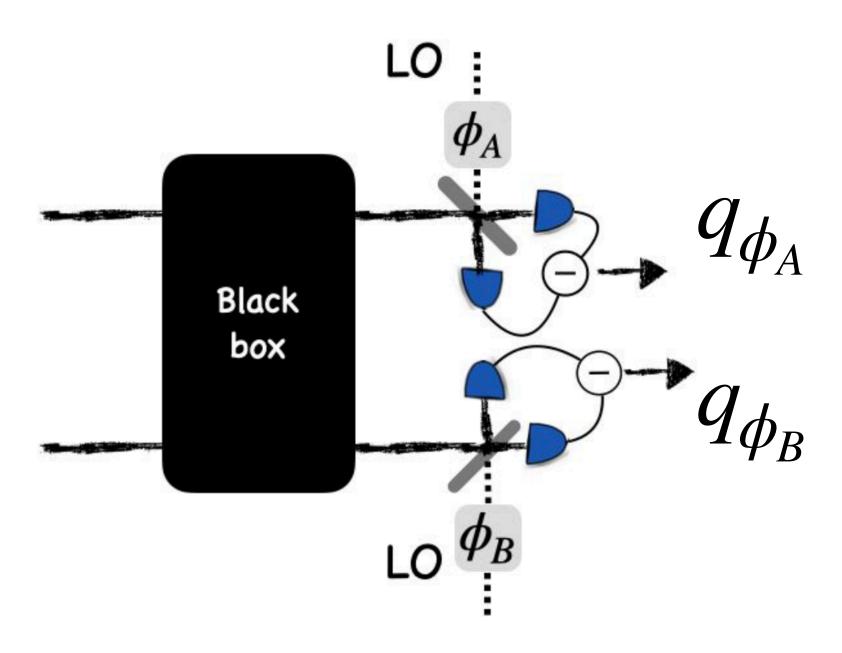
Obtain some genuinely CV and practically relevant Bell inequality





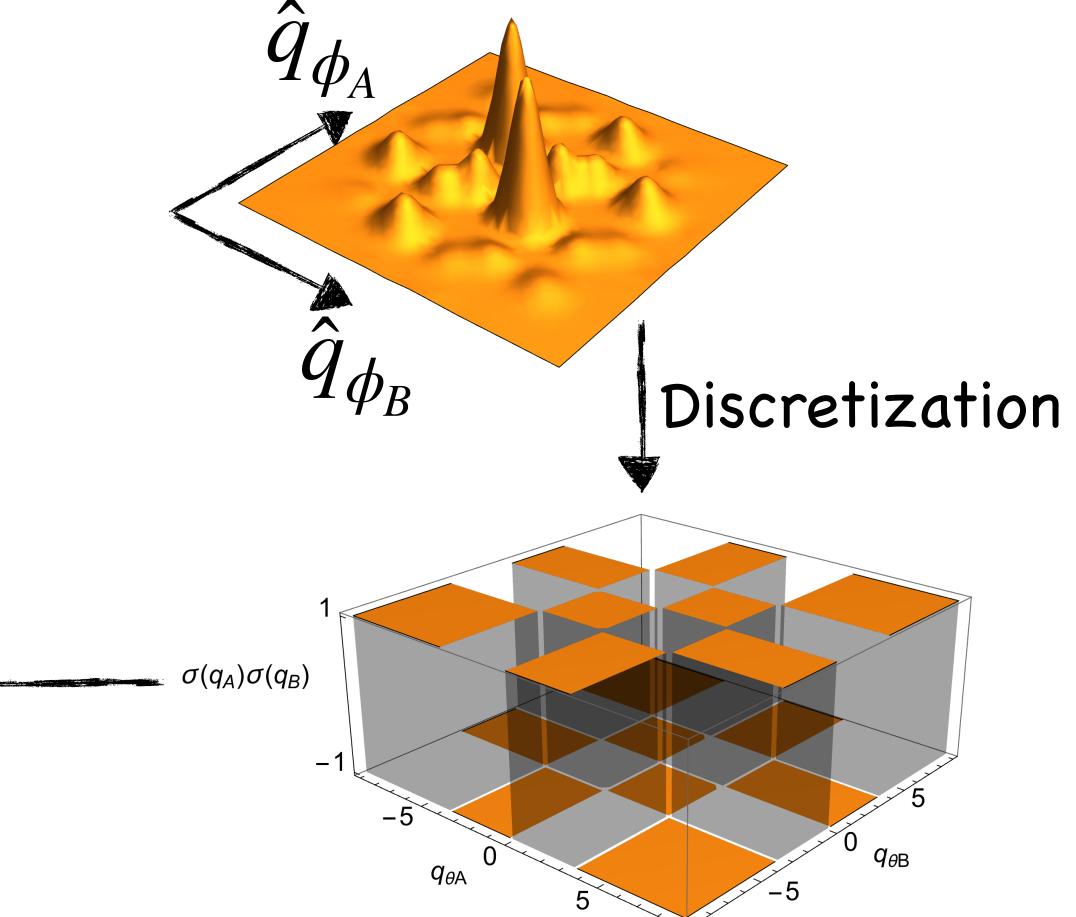
Objective:

Obtain some genuinely CV and practically relevant Bell inequality



Apply CHSH inequality

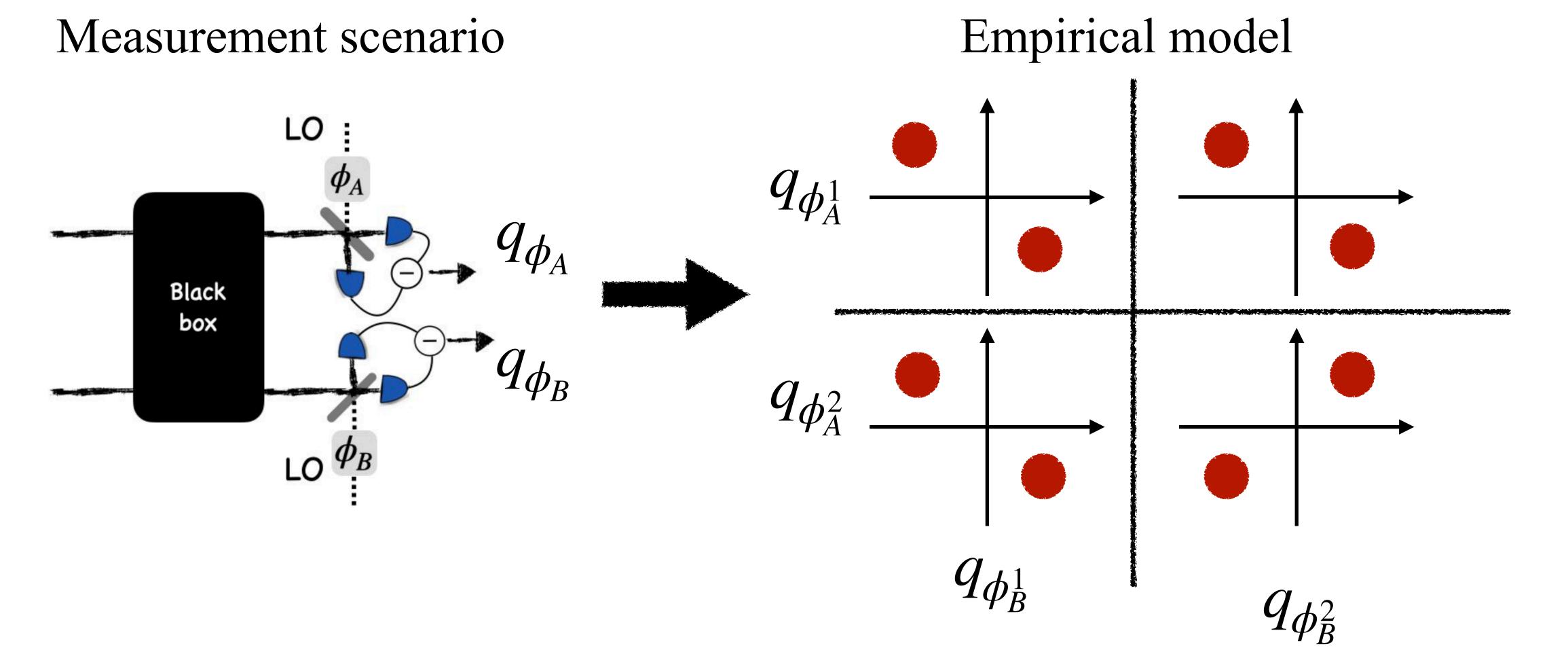
$$\langle \sigma_{\phi_A^{(1)}} \sigma_{\phi_B^{(1)}} \rangle + \langle \sigma_{\phi_A^{(1)}} \sigma_{\phi_B^{(2)}} \rangle + \langle \sigma_{\phi_A^{(2)}} \sigma_{\phi_B^{(1)}} \rangle - \langle \sigma_{\phi_A^{(2)}} \sigma_{\phi_B^{(2)}} \rangle \le 2$$



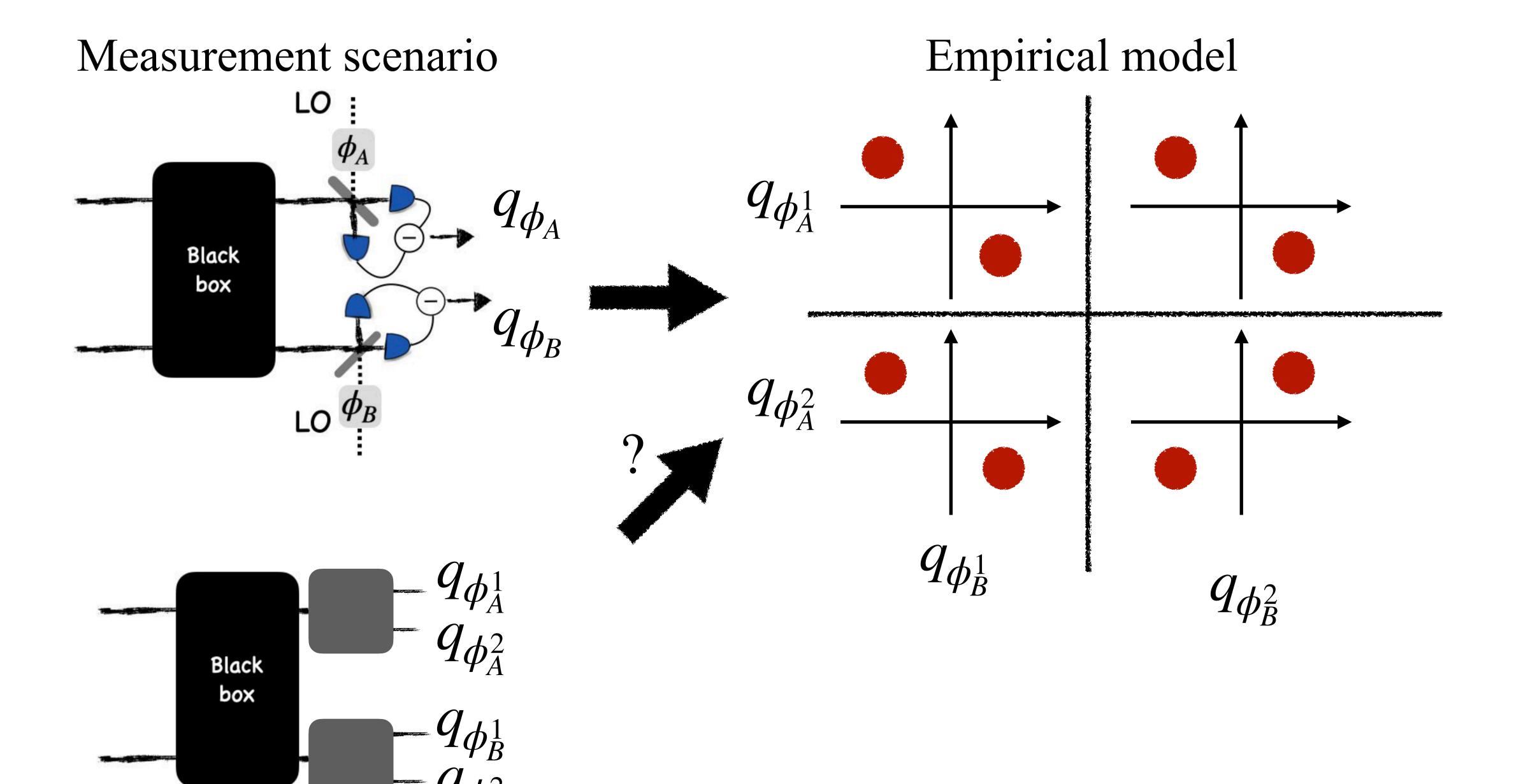
Theorem: For this kind of measurement scenario

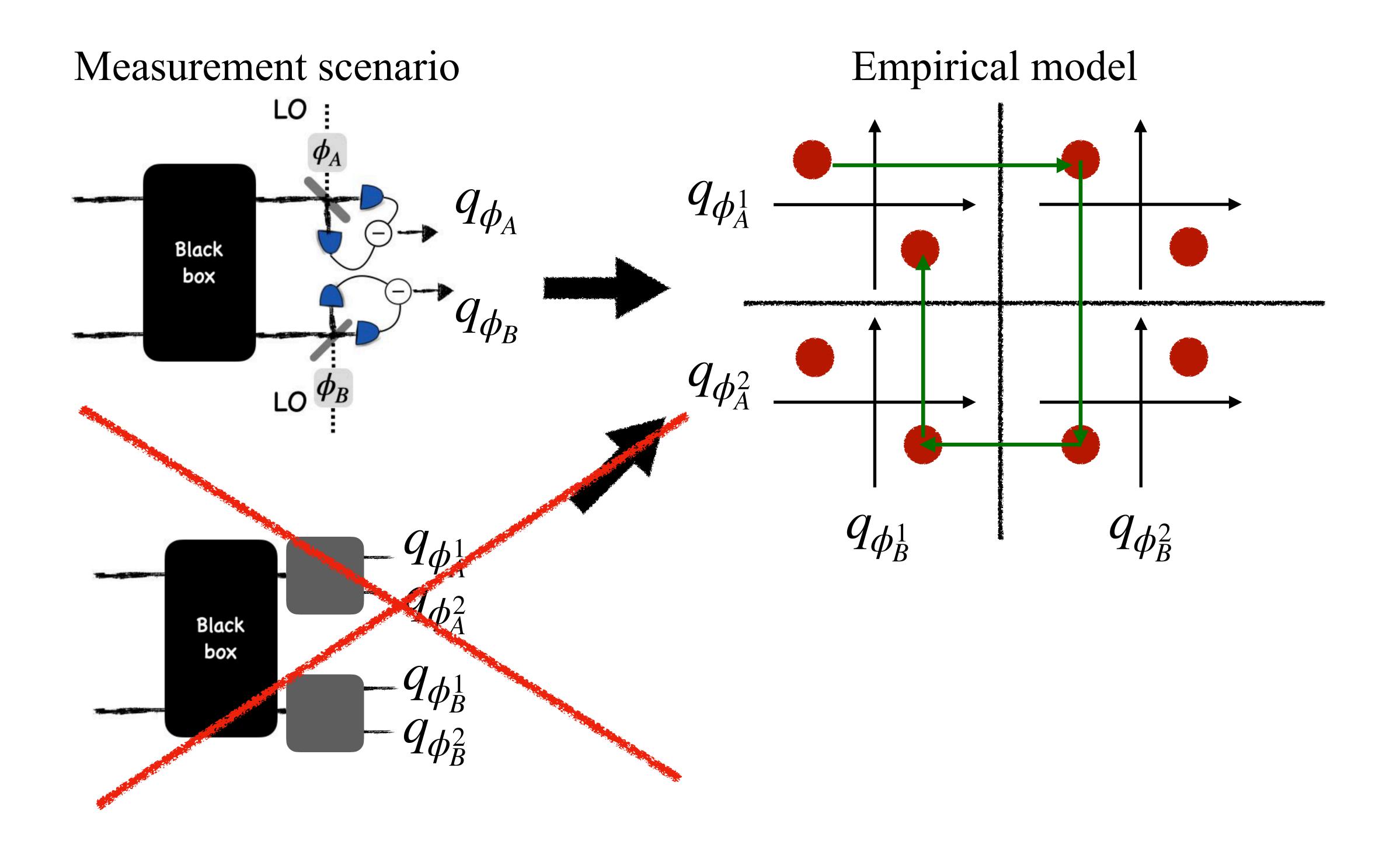
Bell non-locality
(existence of a LHVM)

Contextuality



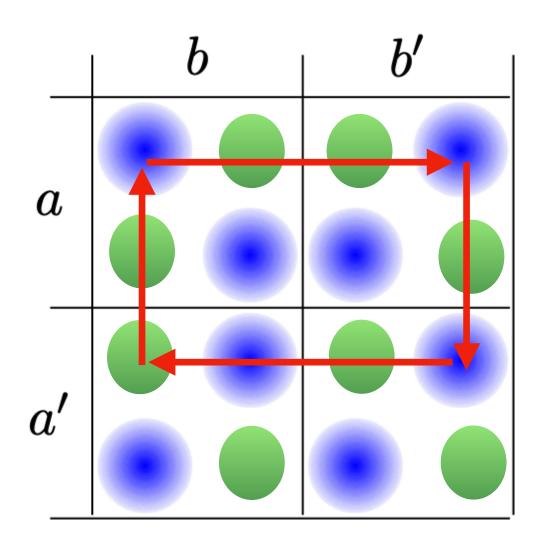
Non contextual if there is a global probability distribution that explains all the different contexts.





Quantifying contextuality

Intuition: what fraction of our measurement results are explained by a global probability distribution.

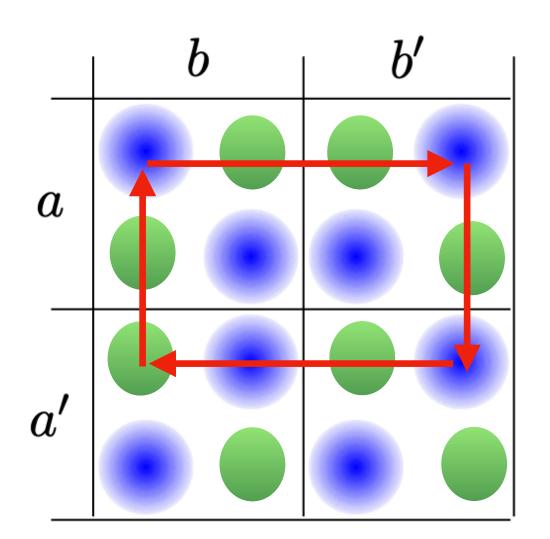


Intermediate behaviors are possible

non Contextual fraction > 0

Quantifying contextuality

Intuition: what fraction of our measurement results are explained by a global probability distribution.



Given empirical behavior its non contextual fraction is given by

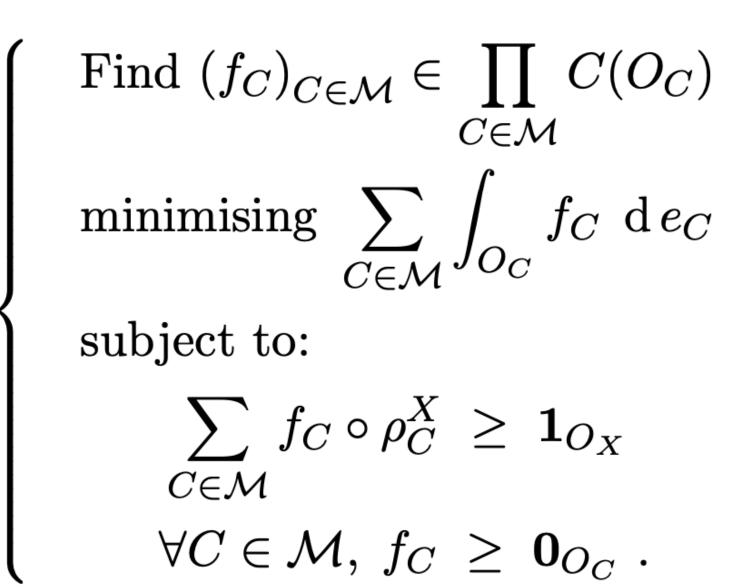
$$\sup_{\mu \ge 0} \left(\int_{O_X} d\vec{x} \mu(a, a', b, b') \quad | \forall C \in M : \mu_C(x_C^A, x_C^B) \le e_C(x_C^A, x_C^B) \right)$$

Infinite Linear program:

Primal

Find $\mu \in \mathbb{M}_{\pm}(O_X)$ maximising $\mu(O_X)$ subject to:

$$\forall C \in \mathcal{M}, \ \mu|_C \le e_C$$
 $\mu \ge 0.$

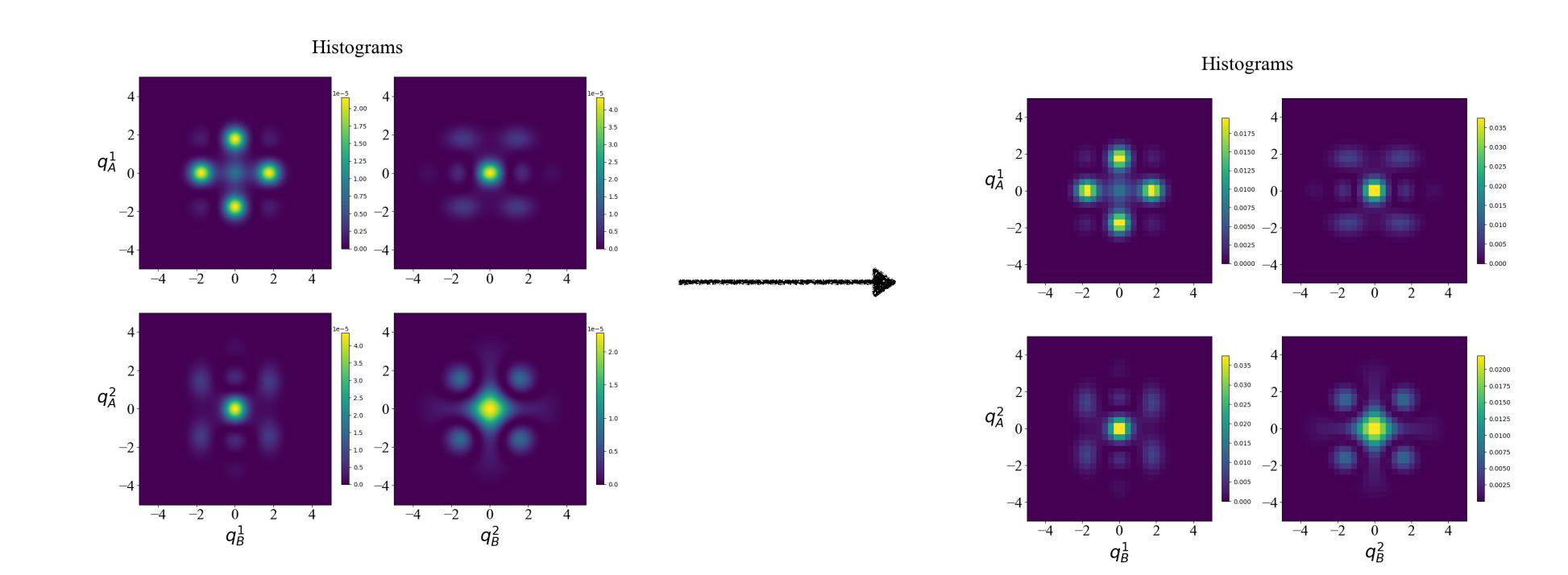


Relaxation of the infinite linear program

1- Moment based SDP hierarchy

Relaxation of the infinite linear program

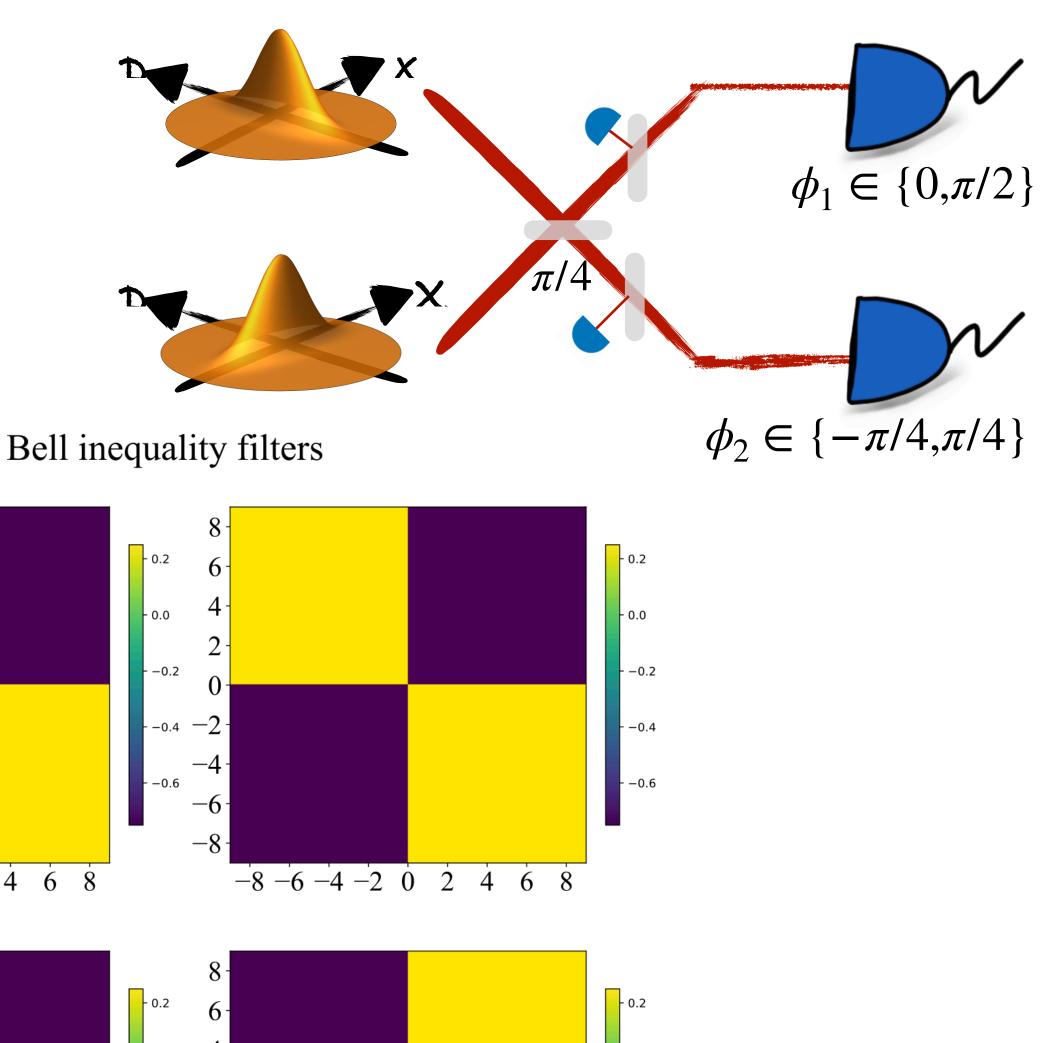
- 1- Moment based SDP hierarchy
- 2- Finite Linear programs based on binning of the histograms

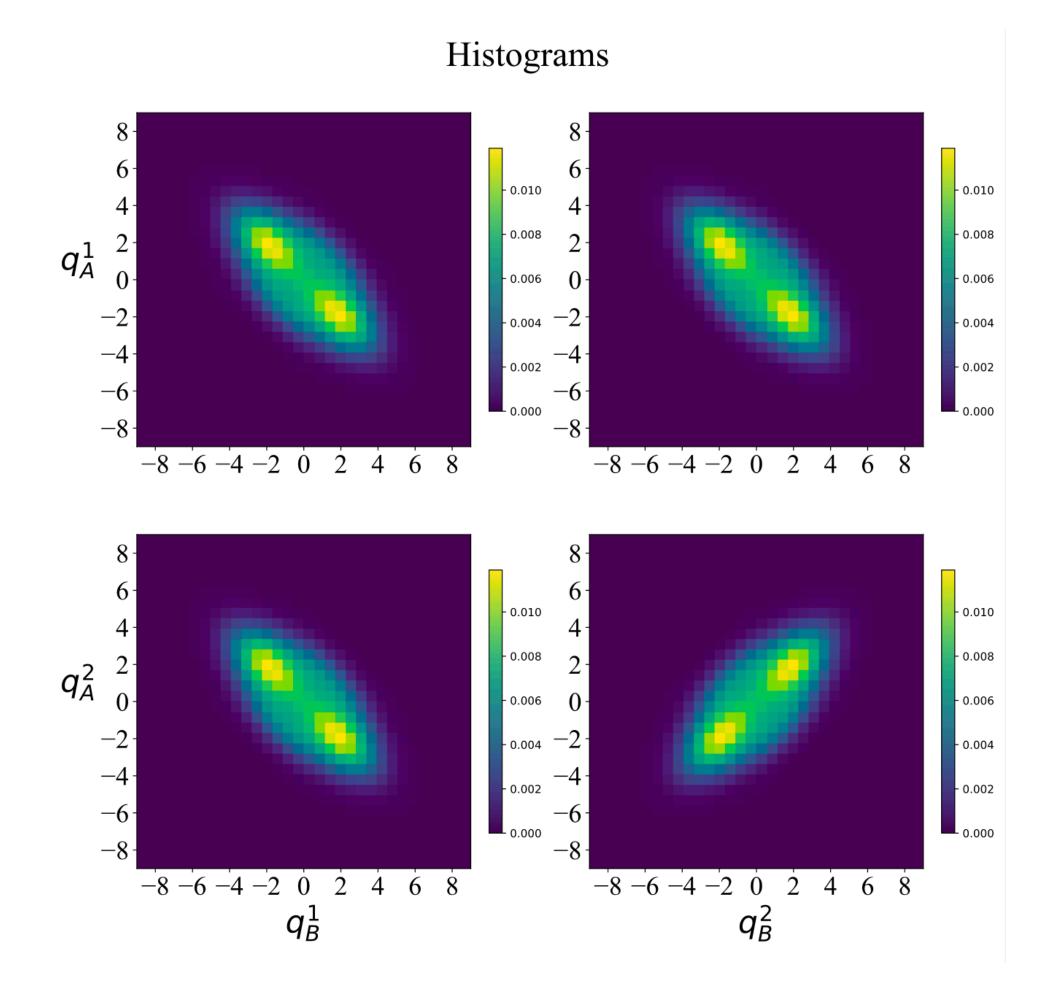


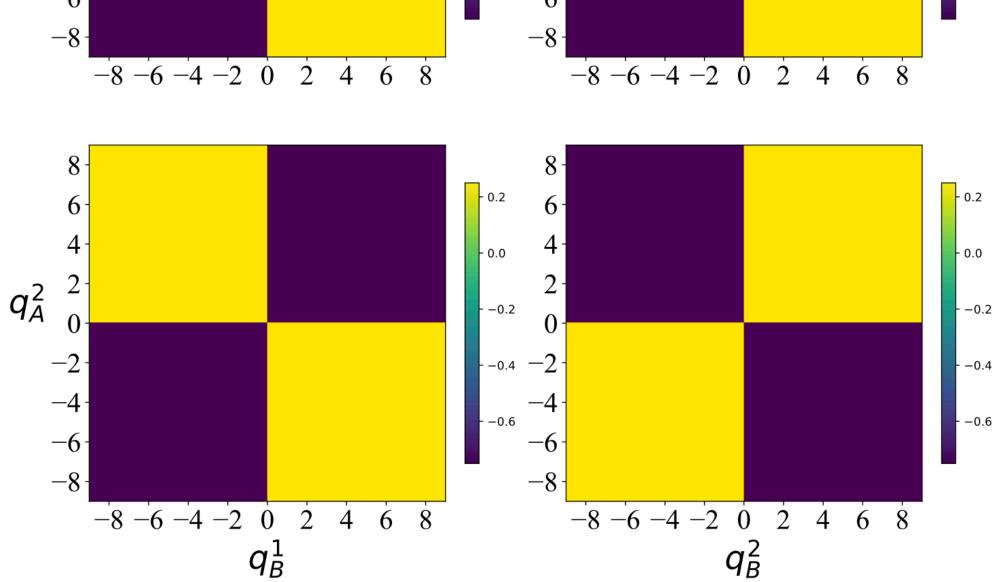
Two photon subtracted state

$$r_1 = -r_2 = 0.68(5.9dB)$$

$$CF = 2.37 \%$$

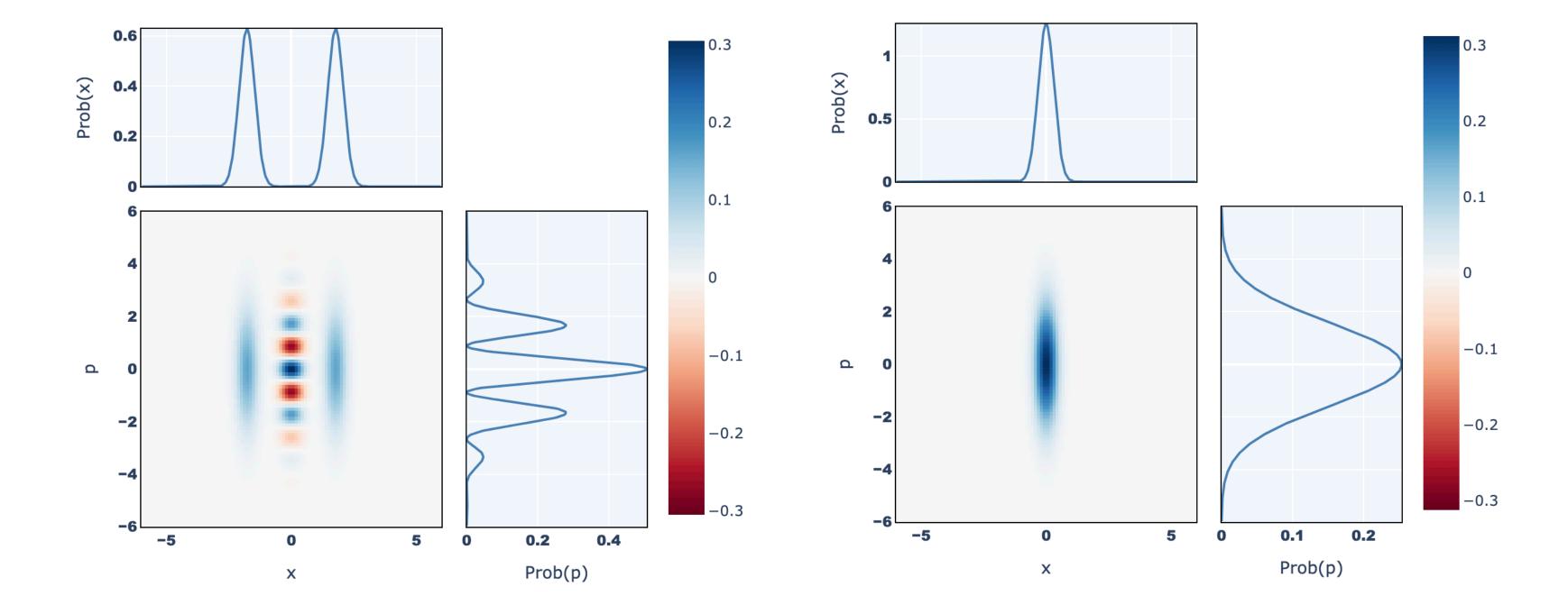






«GKP» entangled state
$$|\psi\rangle = \frac{\left(|11\rangle - |00\rangle - (1 + \sqrt{2})(|01\rangle + |10\rangle)\right)}{2\sqrt{2 + \sqrt{2}}}$$

$$|0\rangle = \frac{|\alpha, r\rangle + |-\alpha, r\rangle}{\sqrt{2}} \qquad |1\rangle = \hat{S}(r)|0\rangle$$



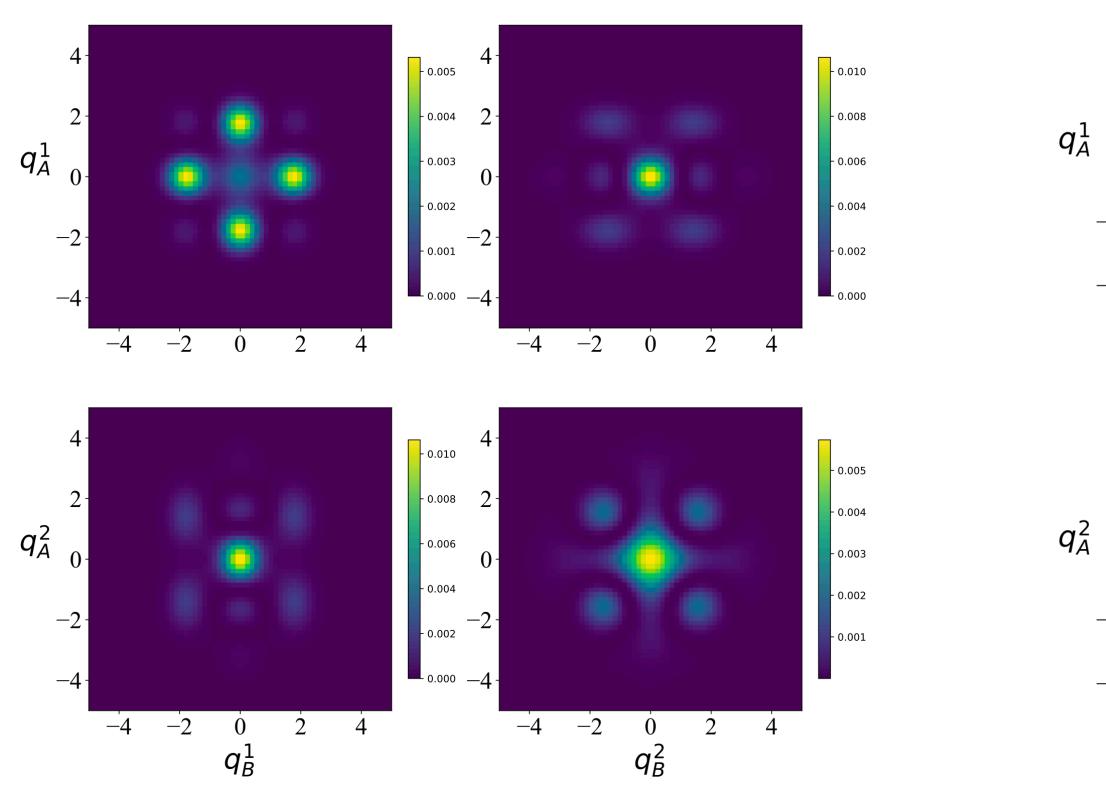
«GKP» entangled state

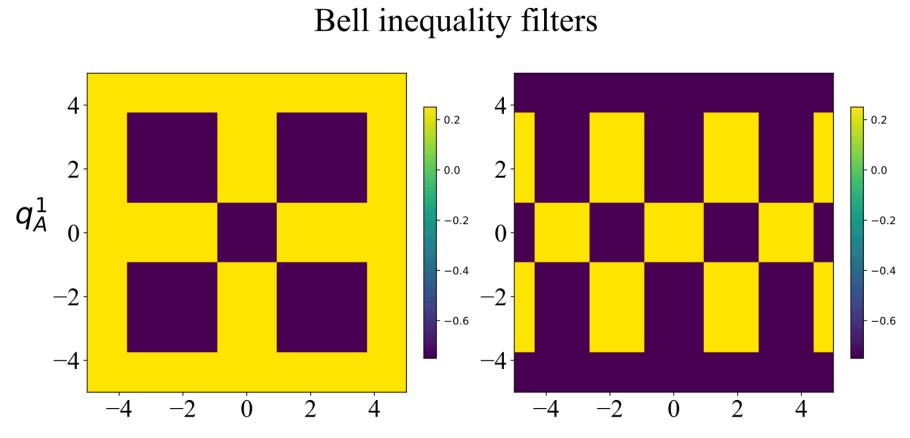
$$|\psi\rangle = \frac{\left(|11\rangle - |00\rangle - (1 + \sqrt{2})(|01\rangle + |10\rangle)\right)}{2\sqrt{2 + \sqrt{2}}}$$

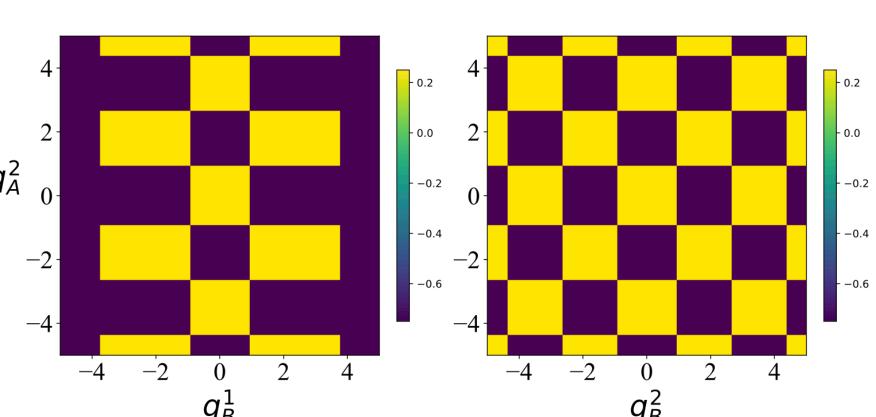
$$|1\rangle = \frac{|\alpha, r\rangle + |-\alpha, r\rangle}{\sqrt{2}} \qquad |1\rangle = \hat{S}(r)|0\rangle$$

Histograms

$$CF = 26.2 \%$$







CF: 26 % Bell inequality filters

Histograms

Histograms $q_{A}^{10.0}$ $q_{A}^$

Multi-mode systems

$$|\psi\rangle = \frac{|000\rangle_{CV} + |111\rangle_{CV}}{\sqrt{2}}$$

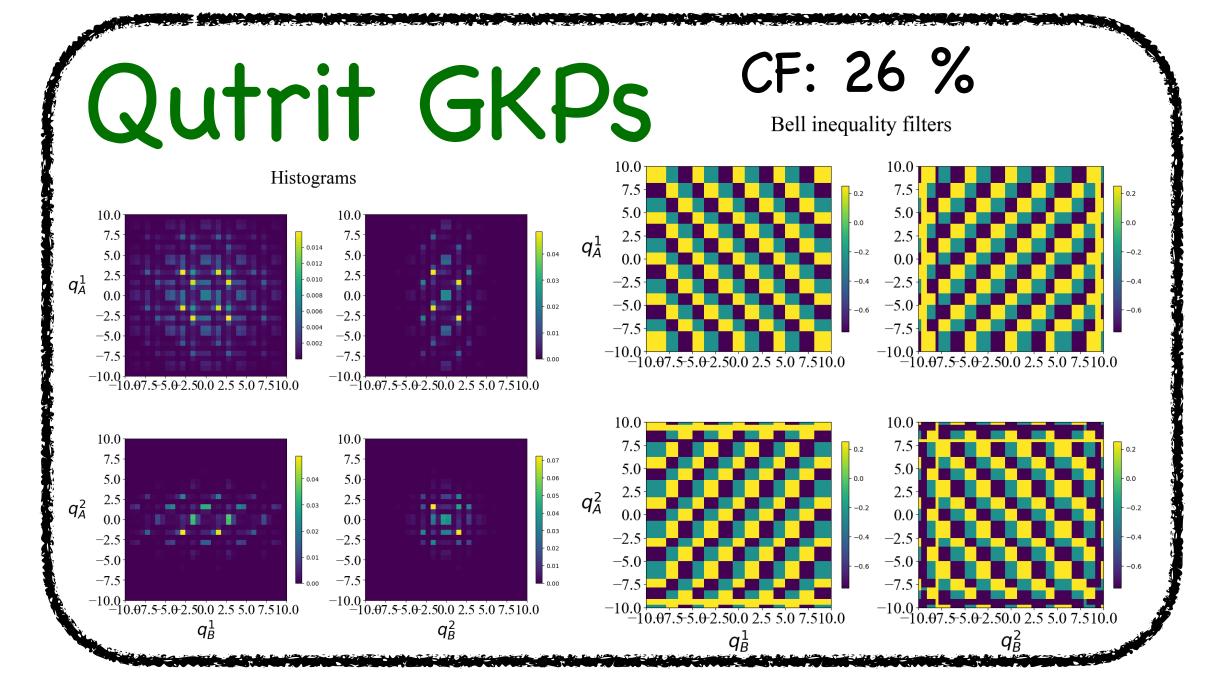
Encoding: GKP (low quality ones)

CF: 46 % !!! (well beyond CHSH)

Hybrid systems

$$|\psi\rangle = \frac{|0\rangle_{DV}|0\rangle_{CV} + |1\rangle_{DV}|1\rangle_{CV}}{\sqrt{2}}$$

CV encoding: GKP, even vs odd cats ...



Multi-mode systems

$$|\psi\rangle = \frac{|000\rangle_{CV} + |111\rangle_{CV}}{\sqrt{2}}$$

Encoding: GKP (low quality ones)

CF: 46 % !!! (well beyond CHSH)

Hybrid systems

$$|\psi\rangle = \frac{|0\rangle_{DV}|0\rangle_{CV} + |1\rangle_{DV}|1\rangle_{CV}}{\sqrt{2}}$$

CV encoding: GKP, even vs odd cats ...

Many open questions:

- moment based inequalities do not exist at low order
- finding good states is a daunting task

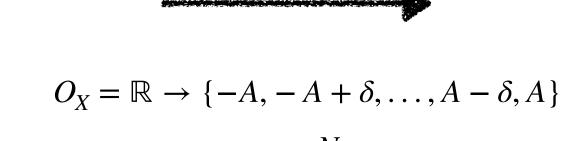
Thank you!

2- Discrete linear program

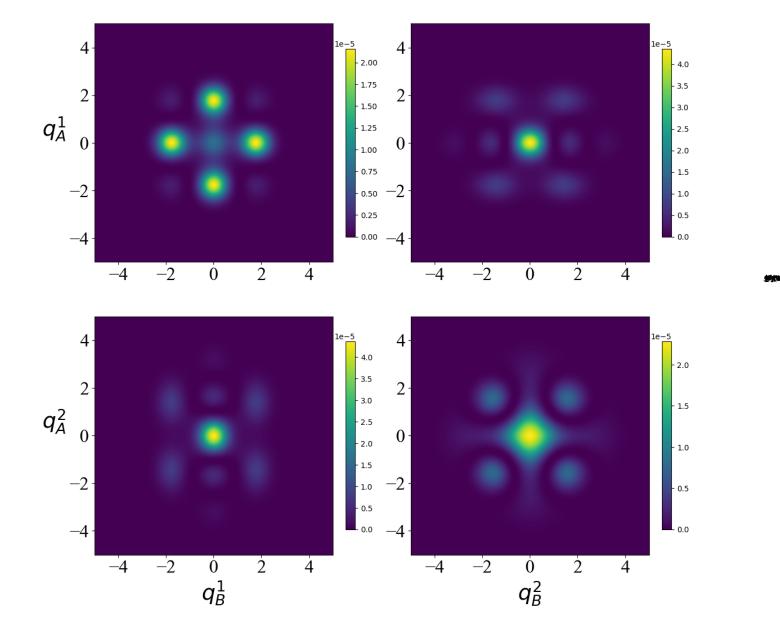
Infinite LP (primal)

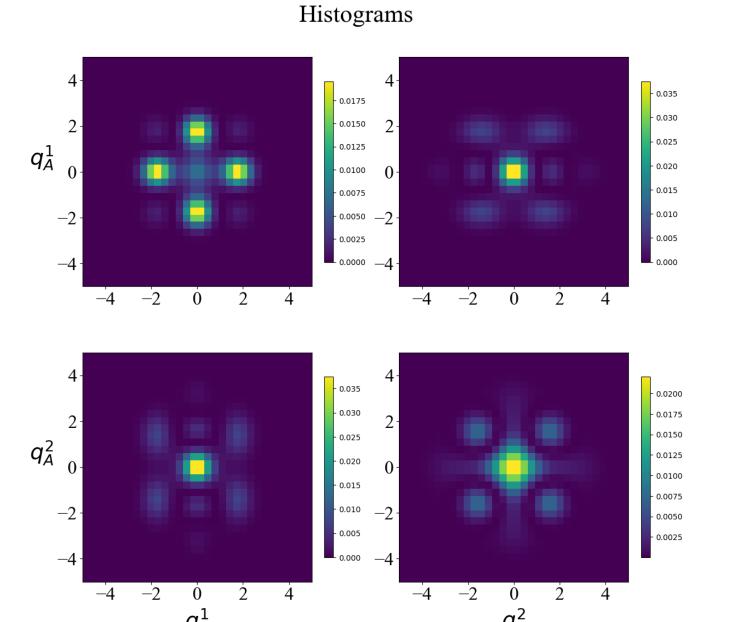
$$(P) \begin{cases} \mathsf{Find} & \mu \in \mathrm{M}_{\pm}((\mathrm{O}_X)) \\ \max & \mu(\mathrm{O}_X) \\ \mathsf{s.t.} & \forall C \in \mathscr{M}\mu \mid_C \leq e_C \\ \mu \geq 0. \end{cases}$$

Discretization



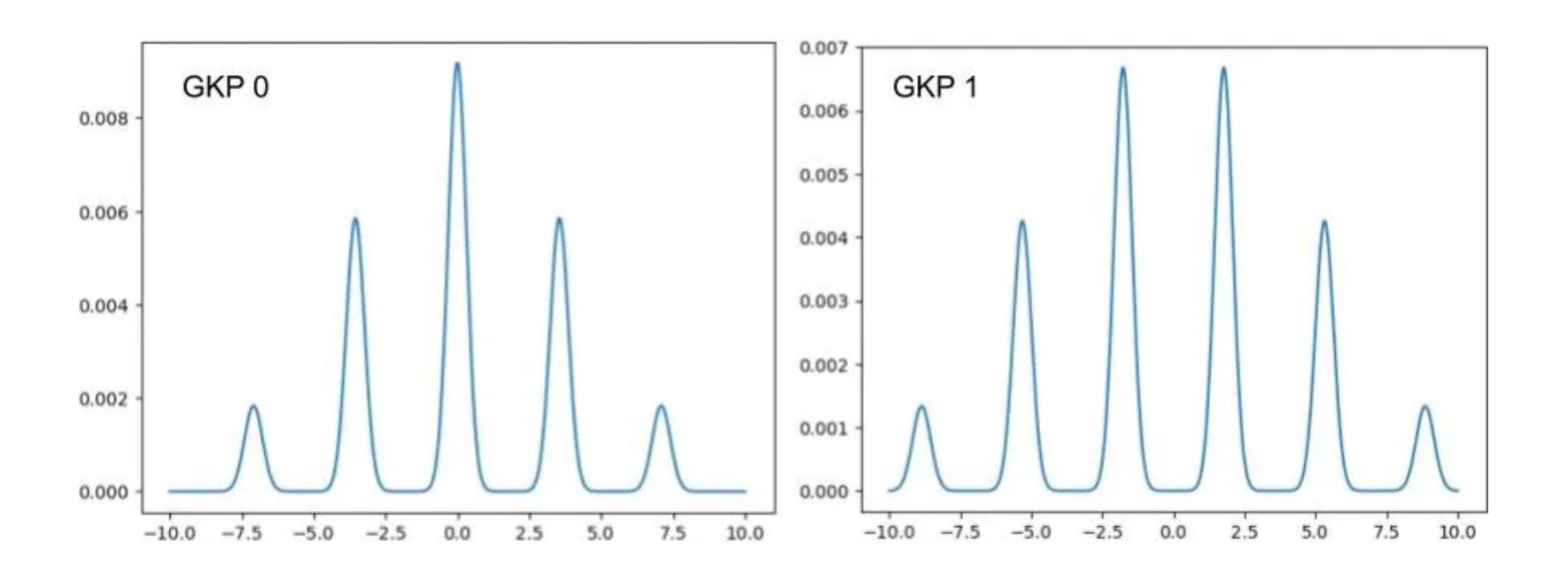
 $(P,D) \begin{cases} \text{Find} & \mu \in \mathbb{M}(N_{bins}^{|X|}) \\ \max & \sum_{i,j,k,l} \mu_{ijkl} \\ \text{s.t.} & \forall C \in \mathcal{M}\mu \mid_C \le e_C \\ \mu \ge 0. \end{cases}$



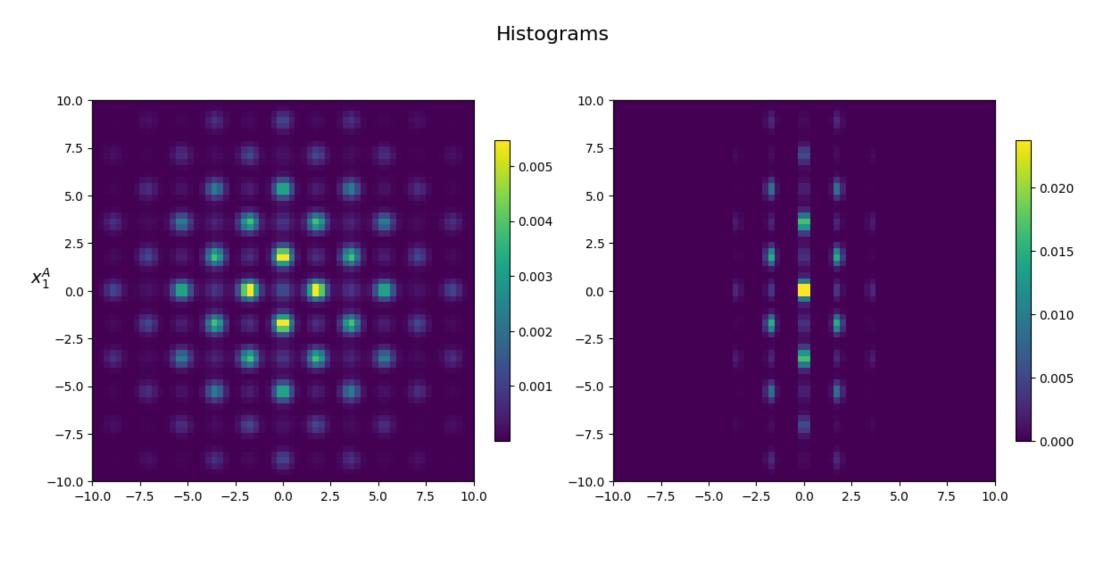


GKP entangled state

$$|\psi\rangle = \frac{\left(|11\rangle - |00\rangle - (1 + \sqrt{2})(|01\rangle + |10\rangle)\right)}{2\sqrt{2 + \sqrt{2}}}$$



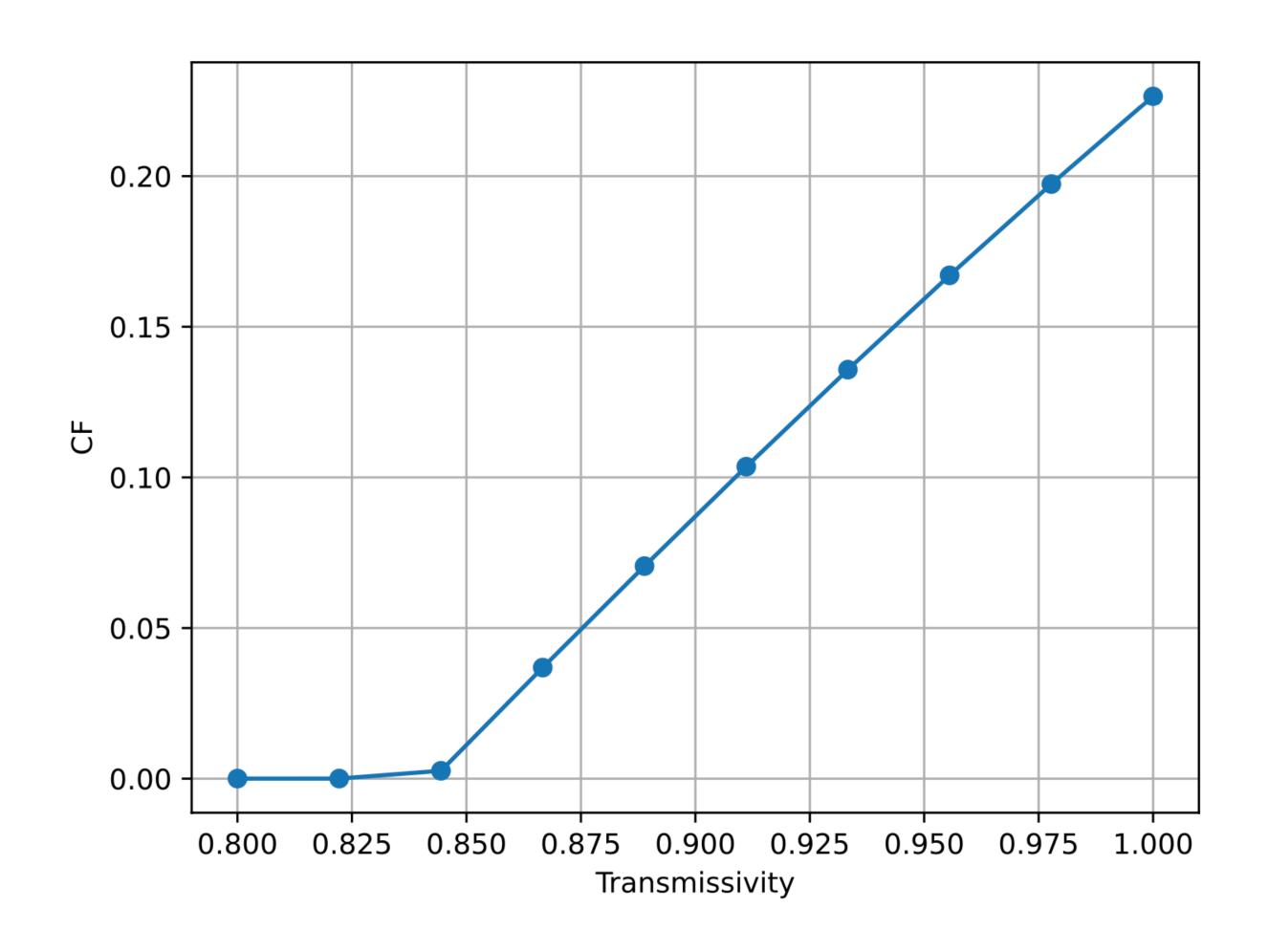
GKP entangled state



$$|\psi\rangle = \frac{\left(|11\rangle - |00\rangle - (1 + \sqrt{2})(|01\rangle + |10\rangle)\right)}{2\sqrt{2 + \sqrt{2}}}$$

No. bins	8	16	32	64
CF	0	0.2434	0.3452	0.3685

Loss resilience



Generalized Bell inequality

Find
$$(\beta_C)_{C \in \mathcal{M}} \in \prod_{C \in \mathcal{M}} C(O_C)$$

maximising $\sum_{C \in \mathcal{M}} \int_{O_C} \beta_C \, de_C$

subject to:
$$\sum_{C \in \mathcal{M}} \beta_C \circ \rho_C^X \leq \mathbf{0}_{O_X}$$

$$\forall C \in \mathcal{M}, \ \beta_C \leq |\mathcal{M}|^{-1} \mathbf{1}_{O_C}.$$
 b
 b'

0.25 -0.75 0.25

-0.75 0.25

-0.75 0.25

0.25 -0.75

0.25 -0.75

if no contextuality

$$e_C \to \mu_X \qquad \sum_{C \in \mathcal{M}} \int_{O_C} \beta_C de_C = \sum_{C \in \mathcal{M}} \int_{O_X} \beta_C \cdot \rho_C^X d\mu = \int_{O_X} d\mu \left(\sum_C \beta_C \cdot \rho_C^X \right) \le 0$$