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WHAT IS A CHANGE-POINT DETECTION?

 Bob measures Alice’s output to detect the state change. The number of extra steps Bob takes to declare the change is latency.

 The classical version of the problem is well studied, with a wide range of applications, including industrial quality control, onset 
detection in seismic signal processing, medical diagnostics, and environmental monitoring. 

 In the classical case, instead of sending quantum states, Alice sends i.i.d. samples following a probability distribution 𝑃1 first and changes to 𝑃2 
at step 𝜈 unknown to Bob. 

 Quickest change-point detection was analyzed by Fanizza, Hirche, and Calsamiglia (PRL 131, 020602, 2023) for finite-dimensional 
input quantum states.

 Here we study quickest change-point detection for the infinite-dimensional (continuous-variable) input quantum states.

… , σ, 𝜎, 𝜎, 𝜌, 𝜌, … , 𝜌, 𝜌

Alice: sends quantum 
states 𝜌 to Bob but 

changes to 𝜎 at step 

𝜈 + 1 unknown to Bob.

Bob: knows that he should 
expect either 𝜌 or 𝜎.
Desires to estimate 𝜈 with 
some confidence.



Strategy and Measurement Outcome

A. Notation

 At step 𝑛, Bob receives a sample from the random variable, 𝑋𝑛 following 
an i.i.d. distribution, 𝑃1 for 𝑛 ≤ 𝜈 and 𝑃2 and for 𝑛 ≥ 𝜈 + 1.

 The complete history of measurement outcomes up to step 𝑛 is a vector: 

               𝐗𝑛= 𝑋1, 𝑋2, … , 𝑋𝑛 ;  𝐱𝑛  =  (𝑥1, … , 𝑥𝑛)

 𝑷𝝂 ≔ Probability of a specific sequence of outcomes 𝐱𝑛, given the 
change happens at step 𝜈 + 1.

 𝑬𝝂: = Expectation with respect to 𝑷𝝂 given the change happens at step 
𝜈 + 1

B. Detection Strategy 

 A change-point detection strategy 𝑆 is a decision rule for finding the 
distribution of the sample received.

 The strategy's output is the alarm time 𝑇𝑆 ​ which is the step number 
when the algorithm decides to stop.

Performance Analysis

C. Mean Time to False Alarm 

 𝜏∞(S):=𝑬∞(𝑇𝑆 ​)

 An effective strategy must make this value large enough to avoid 
stopping prematurely.

 Worst-worst case latency: 

     𝜏(𝑆) =sup𝜈≥0sup 𝐱𝜈 𝑷∞[𝑿𝜈= 𝐱𝜈]>0} 𝑬𝜈[𝑇𝑆  −  𝜈| 𝑇𝑆 >  𝜈, 𝐗𝜈 =  𝐱𝜈]

 Lorden’s minmax formulation: The best possible detection 
performance is the infimum over all strategies, 𝑆 with 𝜏∞(𝑆) > 1

𝜏min = inf
𝑆:𝜏∞ 𝑆 >1

𝜏 𝑆

PERFORMANCE ANALYSIS: CLASSICAL CASE

Fact: Cumulative Sum (CUSUM) algorithm achieves the optimum value of the worst-case latency in the classical case.



THE CUSUM ALGORITHM



CUSUM CHART

Latency = 35

Figure credit: Mason Colony

Threshold setting that 
results in a false alarm.

Threshold setting that 
results in a late detection.

Note: we do not consider 
the problem of setting the 
threshold here.



OPTIMALITY OF CUSUM

 The mean time to false alarm 𝜏∞ is the expected value of 𝜏 when no change actually occurred (i.e., 𝜈 = ∞ )

 CUSUM algorithm achieves the optimum value of the worst-case latency 

𝜏𝑚𝑖𝑛~
log 𝜏∞

D(𝑃2||𝑃1)

 

 for large 𝜏∞, where D(𝑃2|| 𝑃1)  =  ∫ 𝑝2(𝑥) log [𝑝2(𝑥)/𝑝1(𝑥)]𝑑𝑥  is the relative entropy (Kullback-Leibler divergence) between 𝑃2 and 
𝑃1, with corresponding densities 𝑝2 𝑥  and 𝑝1 𝑥 .

Sources:

• E. S. Page. Continuous Inspection Schemes, Biometrika, vol. 41, p. 100, June 1954. (Original proposal of CUSUM algorithm)

• G. Lorden. Procedures for reacting to a change in distribution. Annals of Mathematical Statistics, 42(6):1897–1908, Dec. 1971 (Lorden 
establishes the asymptotic minimax optimality of Page's CUSUM procedure)

• G. V. Moustakides. Optimal stopping times for detecting changes in distributions. Annals of Statistics, 14(4):1379–1387, Dec. 1986 (the 
CUSUM procedure is in fact exactly minimax )



QUANTUM CUSUM  (QUSUM)

 A change-point detection strategy 𝑆 now has two parts: 

1. A method for performing measurements on the incoming states.

2. A decision rule for what to do after each measurement.

 Once measurement is fixed, the problem reduces to classical

 Quantum version of Lorden’s minmax formulation: 
𝜏min = inf

𝑆:𝜏∞ 𝑆 >1
𝜏 𝑆

 𝜏 𝑆  is still the worst-case latency, defined previously 𝜏(𝑆) =sup𝜈≥0sup 𝐱𝜈 𝑷∞[𝑿𝜈= 𝐱𝜈]>0} 𝑬𝜈[𝑇𝑆  −  𝜈| 𝑇𝑆 >  𝜈, 𝐗𝜈 =  𝐱𝜈]

 Optimization includes measurements that can jointly process blocks of 𝑙 states at a time

 Fanizza, Hirche, and Calsamiglia (PRL 131, 020602, 2023): for finite-dimensional 𝜎 and 𝜌:

𝜏min = ~
log 𝜏∞

D(𝜎||𝜌)

 D(𝜎| 𝜌 = 𝑇𝑟 𝜎 log 𝜎 − log 𝜌  is the quantum relative entropy

 What about infinite-dimensional (continuous-variable) 𝝈 and 𝝆?



ACHIEVABILITY OF QUICKEST CHANGE-POINT DETECTION USING QUSUM

Finite Dimensional case (Fanizza, Hirche, and Calsamiglia (PRL 131, 020602, 2023)) Our Work

After Bob applies a measurement, we have a classical change detection problem obtaining

𝜏 𝑆  ≤
log 𝜏∞ 𝑆

𝐷ℳ 𝜎||𝜌
+ 𝑂 1 ,  as 𝜏∞ 𝑆 → ∞

where the measured relative entropy 𝐷ℳ(𝜎||𝜌) = D(𝑃2| 𝑃1 , is the classical relative entropy between 
outcome probability distributions after applying the measurement ℳ. 

Consider infinite-dimensional 𝜎 and 𝜌.

Considering all possible measurements, define the maximal measured relative entropy 
෡D(𝜎||𝜌) ≔  sup

ℳ
𝐷ℳ(σ||𝜌)

 where the supremum is over all possible POVMs in the strategy.

Generalizing beyond individual measurements, the QUSUM algorithm can utilize joint measurements on 
blocks of 𝑙 states, distinguishing between 𝜌⊗𝑙 and 𝜎⊗𝑙. If the change point is assumed  a multiple of 𝑙, the 
trade-off expression modifies to:

                                   𝜏min≤
log( 𝜏∞/𝑙)

෡D(𝜎⊗𝑙||𝜌⊗𝑙)/𝑙
   + O(1)        as 𝜏∞  → ∞.

Hayashi (J. Phys. A: Math. Gen. 34, 3413 (2001)) showed for finite dimensional states 𝜌 and 𝜎 that there 

exists a sequence of POVM’s, ℳ𝑙 such that lim
𝑙→∞

D
ℳ𝑙 (𝜎⊗𝑙||𝜌⊗𝑙)

𝑙
 = D(𝜎||𝜌) which completes the proof.

Fanizza et al.’s achievability cannot be 
applied in the infinite-dimensional 
setting because Hayashi’s result is not 
apparent.
An infinite dimensional version of 
Hayashi’s result is our first 
contribution.



GENERALIZATION OF HAYASHI’S RESULT: STATEMENT

 Setup: Let 𝜎 and 𝜌 be density operators (quantum states) in an infinite-dimensional separable Hilbert space, 𝐻.

 Conclusion: Then, there exists a subsequence of natural numbers, {𝑙𝑛}, and a sequence of generalized 
measurements (POVMs), {ℳ𝑛}𝑛=1

∞ , on the corresponding multi-copy spaces 𝐻⊗𝑙𝑛 , such that the following holds:

lim
𝑛→∞

𝐷ℳ𝑛(𝜎⊗𝑙𝑛||𝜌⊗𝑙𝑛)

𝑙𝑛
= D(σ||ρ),  ∀𝜎.

 Proof (idea): 

1. Hayashi proved a similar result for finite dimensional states. 

2. We reduce our problem to finite-dimensions using certain quantum channels and go back via a two lemmas.



PROOF (SKETCH): GENERALIZATION OF HAYASHI’S RESULT

 Lemma 1: Let 𝜎 and 𝜌 be two states on an infinite dimensional Hilbert space, 𝐻. Then there exists a sequence of finite 
dimensional Hilbert spaces {𝐻𝑛} and unital quantum channels Φ𝑛 mapping states on 𝐻 to those on 𝐻𝑛 such that

D(𝜎| 𝜌 =  lim
𝑛→∞

D(Φ𝑛(𝜎)| Φ𝑛 𝜌 .

 Lemma 2: Let 𝐾1 and 𝐾2 be Hilbert spaces. Let Φ be a unital quantum channel from 𝐾2 to 𝐾1  and let Φ∗ denote the dual 
channel of  Φ. If ℳ is a POVM on 𝐾1 then Φ∗(ℳ) is a POVM on 𝐾2 and the measured relative entropy w.r.t the POVM 
Φ∗ ℳ , satisfies

                                                                       𝐷Φ∗ ℳ (𝜎| 𝜌 = 𝐷ℳ(Φ(𝜎)| Φ 𝜌 , 

      for all state 𝜎 and 𝜌.

Proofs of lemma are highly technical, involving techniques from the theory of operator algebras.

 Finally, D(𝜎| 𝜌 ≈ D(Φ𝑛(𝜎)| Φ𝑛 𝜌 ≈
𝐷ℳ𝑛(Φ𝑛 𝜎 ⨂𝑙𝑛||Φ𝑛 𝜌 ⨂𝑙𝑛)

𝑙𝑛
=

𝐷Φ𝑛
∗ ℳ𝑛

(𝜎⊗𝑙𝑛| 𝜌⊗𝑙𝑛

𝑙𝑛
 for large 𝑛. ℳ𝑛 = Φ𝑛

∗ ℳ𝑛  is the 
required sequence of POVMs

Note: The dual relationship between 𝚽 and 𝚽∗ corresponds to the relationship between Schrodinger and Heisenberg 
representation in quantum mechanics. The channel 𝚽 acts on states while the dual channel 𝚽∗ acts on observables, and, 
hence, on the elements of a POVM.

Lemma 1                    Hayashi                                                 Lemma 2
   



OPTIMALITY OF QUICKEST CHANGE-POINT DETECTION USING QUSUM

Finite Dimensional case (Fanizza et al. PRL, 2023) Our Work

Optimality: Uses strong converse of Stein’s Lemma 
along with some classical CUSUM analysis

Strong converse of  Stein’s lemma is not available in the infinite dimensional case. 
We reduce the problem to the finite dimensional case.

 𝜏 ≥ (1 − 𝜖)
 log 𝜏∞

D(𝜎||𝜌)
(1 + 𝑜(1)), as 𝜏∞ goes to infinity.

• Fix an increasing sequence of finite dimensional subspaces of 𝐻.

• The projection map from 𝐻 to 𝐻𝑛 give rise to a quantum channel.

• Optimal detection delay when restricted to 𝐻𝑛 decreases as 𝑛 increases

• Optimality: Optimal detection delay restricted to 𝐻𝑛  converges in the 

limit of large 𝑛 to the optimal detection delay on the full space 𝐻.

Then the proof of optimality can be concluded using the finite-dimensional 
result of Fanizza et al.



CONCLUSION

 We showed that fundamental bounds PRL 131, 020602, 2023 apply directly to the broad and technologically significant class of continuous 
variable (CV) quantum states (arXiv:2504.16259, accepted in IEEE ITW).

 This includes the quantum states of light that underpin much of quantum optics and form the basis for numerous quantum communication protocols.

 Thus, we provide a fundamental benchmark against which practical systems (such as monitoring equipment malfunctions, localizing the change in fiber transmission 
loss, detecting adversaries, etc.) can be assessed and optimized.

 Future work: Elaborate more on the converse, or at least, identify the set of quantum states for which we can provide examples.

 Focus on applications. For example,

2-mode 
Gaussian 
state

𝜃𝑖

𝑖 = 1 (default), 2 (change)

Measurement

QRE for generic 2-mode G state:   

Floodlight Illumination:

Optimization on the state given energy constraints and 
optimal measurement:

Similar work: Quantum-enhanced change detection and joint communication detection. Saikat Guha, Zihao 
Gong. Phys. Rev. A 112, 032604  (2025).

https://arxiv.org/abs/2504.16259
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