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WHAT IS A CHANGE-POINT DETECTION?

Bob: knows that he should
expect either p or a.
Desires to estimate v with
some confidence.

Alice: sends guantum
states p to Bob but

iy 0,0,0,0,0, e, P, P

changes to o at step
v + 1 unknown to Bob.

=  Bob measures Alice’s output to detect the state change. The number of extra steps Bob takes to declare the change is latency.

®  The classical version of the problem is well studied, with a wide range of applications, including industrial quality control, onset
detection in seismic signal processing, medical diagnostics, and environmental monitoring.

= |nthe classical case, instead of sending quantum states, Alice sends i.i.d. samples following a probability distribution P; first and changes to P,
at step v unknown to Bob.

= Quickest change-point detection was analyzed by Fanizza, Hirche, and Calsamiglia (PRL 131, 020602, 2023) for finite-dimensional
input quantum states.

= Here we study quickest change-point detection for the infinite-dimensional (continuous-variable) input quantum states.



PERFORMANCE ANALYSIS: CLASSICAL CASE

Strategy and Measurement Outcome Performance Analysis

A. Notation C. Mean Time to False Alarm

= Atstep n, Bob receives a sample from the random variable, X, following Too(S):=E oo (T<)
an i.i.d. distribution, P; forn < vand P, andforn > v + 1. 012/ H ool LS

= The complete history of measurement outcomes up to step n is a vector: An effective strategy must make this value large enough to avoid
X"=(Xy, Xqy s Xp)i X = (X1, e %) stopping prematurely.

= P, := Probability of a specific sequence of outcomes x", given the
change happens at step v + 1.

n - .
= E,:= Expectation with respect to P,, given the change happens at step Worst-worst case |atency:

+1
v T(S) =SUPy»0SUP{xV| P, [xV=x"]>0} Ev[Ts — V| Ts > v, XV = x]

B. Detection Strategy

= A change-point detection strategy S is a decision rule for finding the
distribution of the sample received. ®  Lorden’s minmax formulation: The best possible detection

®  The strategy's output is the alarm time T5 which is the step number performance is the infimum over all strategies, S with TOO(S) > 1
when the algorithm decides to stop. (s)
T

Tmin = (o b,

Fact: Cumulative Sum (CUSUM) algorithm achieves the optimum value of the worst-case latency in the classical case.



THE CUSUM ALGORITHM

Setup & Initialization
* Require:
= Pre-change PDF: Pi(x)
o Post-change PDF: Pz(x)
o Threshold: h > 0
o Observations: x1, Xz, ...
« |nitialize:
> CUSUM statistic: S « 0
o Time step: n ¢« 0

|

Increment time

step
né<n+1

No

Get next
observation: Xn

Calculate LLR
£, < log( P2(xn) /
Pi(xn) )

Update CUSUM

statistic
S ¢« max(0, S + &)

Check threshold
S=h?

Return n




CUSUM CHART

Figure credit: Mason Colony
CUSUM algorithm for a mean change of Gaussian distributions N(0,1) to N(1,1)
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OPTIMALITY OF CUSUM

The mean time to false alarm 7, is the expected value of T when no change actually occurred (i.e., v = o)

CUSUM algorithm achieves the optimum value of the worst-case latency

log T
fmin™ D (| Py)

for large 7o, Where D(P;|| P1) = [ p,(x) log [p,(x)/p1(x)]dx is the relative entropy (Kullback-Leibler divergence) between P, and
P;, with corresponding densities pz(x§ and p, (x g

Sources:

E. S. Page. Continuous Inspection Schemes, Biometrika, vol. 41, p. 100, June 1954. (Original proposal of CUSUM algorithm)

G. Lorden. Procedures for reacting to a change in distribution. Annals of Mathematical Statistics, 42(6):1897-1908, Dec. 1971 (Lorden
establishes the asymptotic minimax optimality of Page's CUSUM procedure)

G. V. Moustakides. Optimal stopping times for detecting changes in distributions. Annals of Statistics, 14(4):1379-1387, Dec. 1986 (the
CUSUM procedure is in fact exactly minimax )



QUANTUM CUSUM (QUSUM)

= A change-point detection strategy S now has two parts:
1. A method for performing measurements on the incoming states.
2. Adecision rule for what to do after each measurement.

=  Once measurement is fixed, the problem reduces to classical

= Quantum version of Lorden’s minmax formulation:
Tmin = o i0f, 7(S)
= 7(S) is still the worst-case latency, defined previously 7(5) =SUPy>0SUPY|P [xV=xV]>0} Ev[Ts — v|Ts > v, XV = x¥]
m  Optimization includes measurements that can jointly process blocks of [ states at a time

= Fanizza, Hirche, and Calsamiglia (PRL 131, 020602, 2023): for finite-dimensional g and p:

log T4

D(allp)
= D(o|lp) = Tr[o(logo — log p)] is the quantum relative entropy

Tmin =

= What about infinite-dimensional (continuous-variable) o and p?



ACHIEVABILITY OF QUICKEST CHANGE-POINT DETECTION USING QUSUM

Finite Dimensional case (Fanizza, Hirche, and Calsamiglia (PRL 131, 020602, 2023))

After Bob applies a measurement, we have a classical change detection problem obtaining Consider infinite-dimensional a and p.

log(rOo (S))

Dy (allp)
where the measured relative entropy D (a||p) = D(P,||Py), is the classical relative entropy between

outcome probability distributions after applying the measurement M.

7(85) < + 0(1), as T,(S) = o



GENERALIZATION OF HAYASHI’S RESULT: STATEMENT

= Setup: Let 0 and p be density operators (quantum states) in an infinite-dimensional separable Hilbert space, H.

= Conclusion: Then, there exists a subsequence of natural numbers, {l,,}, and a sequence of generalized
measurements (POVMs), {M"}>"_;, on the corresponding multi-copy spaces H® such that the following holds:
D (0O || p®ln
lim 20T o), Vo.

n—>0o ln

= Proof (idea):
1. Hayashi proved a similar result for finite dimensional states.

2. We reduce our problem to finite-dimensions using certain quantum channels and go back via a two lemmas.



PROOF (SKETCH): GENERALIZATION OF HAYASHI’S RESULT

= Lemma 1: Let 0 and p be two states on an infinite dimensional Hilbert space, H. Then there exists a sequence of finite
dimensional Hilbert spaces {H,,} and unital quantum channels ®,, mapping states on H to those on H,, such that

D(allp) = lim D(®p(0)l|Pn(p)).

= Lemma 2: Let K; and K, be Hilbert spaces. Let ® be a unital quantum channel from K, to K; and let ®* denote the dual
channel of ®. If M is a POVM on K; then ®*(M) is a POVM on K, and the measured relative entropy w.r.t the POVM
d* (M), satisfies

Do) (011p) = Dag(@(0) || (p)),
for all state o and p.
Proofs of lemma are highly technical, involving techniques from the theory of operator algebras.

Bln||p,(p)®'n)  Das(agy (@)

= Finally, D(a]lp) = D(®,(0)||Pr(p)) = Doty (Do) for large n. M™ = &3 (M) is the

required sequence of POVMs

In In

Lemma 1 Hayashi Lemma 2

Note: The dual relationship between ® and ®* corresponds to the relationship between Schrodinger and Heisenberg
representation in quantum mechanics. The channel ® acts on states while the dual channel ®* acts on observables, and,
hence, on the elements of a POVM.



OPTIMALITY OF QUICKEST CHANGE-POINT DETECTION USING QUSUM

Finite Dimensional case (Fanizza et al. PRL, 2023)

Optimality: Uses strong converse of Stein’s Lemma Strong converse of Stein’s lemma is not available in the infinite dimensional case.
along with some classical CUSUM analysis We reduce the problem to the finite dimensional case.

* Fix anincreasing sequence of finite dimensional subspaces of H.
* The projection map from H to H,, give rise to a quantum channel.

1> (1—¢) 1;2555 (14 0(1)), as 7o, goes to infinity. * Optimal detection delay when restricted to H,, decreases as n increases
* Optimality: Optimal detection delay restricted to H,, converges in the

limit of large n to the optimal detection delay on the full space H.

Then the proof of optimality can be concluded using the finite-dimensional
result of Fanizza et al.



CONCLUSION

We showed that fundamental bounds PRL 131, 020602, 2023 apply directly to the broad and technologically significant class of continuous
variable (CV) quantum states (arXiv:2504.16259, accepted in IEEE [TW).

This includes the quantum states of light that underpin much of quantum optics and form the basis for numerous quantum communication protocols.
| |

Thus, we provide a fundamental benchmark against which practical systems (such as monitoring equipment malfunctions, localizing the change in fiber transmission
loss, detecting adversaries, etc.) can be assessed and optimized.

Future work: Elaborate more on the converse, or at least, identify the set of quantum states for which we can provide examples.
Focus on applications. For example,

i = 1 (default), 2 (change)

— — . . . ASE 40,%2 YAV
G2 s ) 0; G2 Tin) Floodlight lllumination: DS, @:)162) = =32 sin?(57) [9(v2) - 9(v1)]
Measurement CUSUM
QRE for generic 2-mode G state: p(pe,))p6)) = ~(9ns) +9(n)

+ %(m(ni —1/4) + In(n2 — 1/4)
Optimization on the state given energy constraints and + 2 arccoth(2D;;) TV
optimal measurement: " + 3 arccoth(2D,)2i672P,3).
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Similar work: Quantum-enhanced change detection and joint communication detection. Saikat Guha, Zihao
i ‘ Gong. Phys. Rev. A 112, 032604 (2025).


https://arxiv.org/abs/2504.16259
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