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What is coherence?

Re exp i𝑘 𝑥 − 𝑥1 + exp i𝑘 𝑥 − 𝑥2 = ⋯cos 𝑘(𝑥1 − 𝑥2)

• The ability of two waves to interfere



Quantum: everything is a wave!

• Coherent spins will precess in a magnetic field, incoherent won’t

(Gavin W Morley, Wikimedia)



How do you quantify coherence?

• Optics: compare 𝐸∗(𝑥1)𝐸 𝑥2 to ⟨ 𝐸 𝑥1
2⟩, ⟨ 𝐸 𝑥2

2⟩
• Spatial, temporal correlations

• Quantum optics: correlations beyond intensity

• Violate classical bounds

• Spins: can precess

• More 0 + ei𝜙 1

• Less 0 ⟨0| + 1 ⟨1|
0 + i 1

0 ⟨0|
+ 1 ⟨1|

(Smite-Meister, Wikimedia)
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How do you quantify coherence?

• For a qubit things are easy

1 ei𝜙

e−i𝜙 1
/2 versus 

1 0
0 1

/2

• Magnitude of off-diagonals! Large |𝜌01|

• Not so easy

• Basis dependent

• Goals for a coherence measure

• Quantify interferability via off diagonalness

• Coordinate-system agnostic

• More than two dimensions

0
+
i
1



Enter the 
quadrature coherence scale (QCS)

• Single bosonic mode

• Phase space is position and momentum “quadratures”

• Infinite dimensions → “continuous variables”

• Heisenberg-Weyl group generated by 𝑥 and 𝑝 with 𝑥, 𝑝 = i

• Superposition of different positions or momenta is uniquely quantum

• 𝑥1 + 𝑥2
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quadrature coherence scale (QCS)

• Somehow, that’s easy to calculate

𝒞2 = −
Tr 𝜌, 𝑥 2 + Tr([𝜌, 𝑝]2)

2Tr(𝜌2)
• Or divergence of Wigner function

• Or rate of change of purity with loss

• And:

• Witnesses nonclassicality

• Bounds distances to classical states

• Measures quality of displacement sensors (QFI)

• Convex with loss – probably?

Can we do the same for spins in any finite dimension? 



Proposal: spin coherence scale

• From Heisenberg-Weyl to SU(2)

• Three generators; angular momentum 𝐽1, 𝐽2 = i𝐽3
• Casimir invariant or total spin 𝐽1

2 + 𝐽2
2 + 𝐽3

2 = 𝐽(𝐽 + 1) (qubit has 𝐽 = 1/2)

• Phase space is a sphere, not a plane

• Get around by rotations 𝑅 𝜃, 𝒏 = exp 𝑖𝜃𝑱 ⋅ 𝒏

• Physics: magnetometry, polarimetry, geodesy
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• Phase space is a sphere, not a plane

• Get around by rotations 𝑅 𝜃, 𝒏 = exp 𝑖𝜃𝑱 ⋅ 𝒏

• Physics: magnetometry, polarimetry, geodesy

• Coherence in what basis?

• Eigenstates 𝐽3 𝐽,𝑚 = 𝑚|𝐽,𝑚⟩

• Or rotate to 𝐽𝑖 eigenbasis?

• Noncommutativity of a state 𝜌, 𝐽𝑖
2?
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2. Basis independent?

3. Quantum/classical bound?

4. Nice for pure states? Metrology?

5. Relations to noise? Monotonicity?

6. Quasiprobability distributions?
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3

Tr 𝜌, 𝐽𝑖
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𝑚𝑛
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3

𝑚 − 𝑛 2 𝑖𝑖 𝐽,𝑚 𝜌 𝐽, 𝑛 𝑖𝑖
2

1. Are they equal? Yes.

2. Basis independent? Yes. 

3. Quantum/classical bound? Yes.

4. Nice for pure states? Yes. Metrology? Rotations.

5. Relations to noise? Depolarization susceptibility. Monotonicity? Yes.

6. Quasiprobability distributions? You bet. Especially for large 𝑱

arXiv:2510.09747



Spin coherence scale properties

𝒜2 ∝෍

𝑖=1

3

Tr 𝜌, 𝐽𝑖
2 = 𝒜2 ∝෍

𝑚𝑛

෍

𝑖=1

3

𝑚 − 𝑛 2 𝑖𝑖 𝐽,𝑚 𝜌 𝐽, 𝑛 𝑖𝑖
2

1. Are they equal? Yes. 

• Each basis resolves identity σ𝑚=−𝐽
𝐽

𝐽, 𝑚 𝑖⟨𝐽,𝑚| = 𝕀

• Operator ordering sensitivity is the same as coherence scale

2. Basis independent? Yes. The vector 𝑱 rotates like a vector



Spin coherence scale properties

3. Quantum/classical bound? Yes. What are the classical states?

• Spin coherent states! (Why we refrain from “SCS”)

• Most localized in phase space

• Minimize Δ2𝐽1 + Δ2𝐽2 + Δ3𝐽3, minimize Δ2𝐽𝑖Δ
2𝐽𝑗

• Equivalent to 2𝐽 spin-
1

2
s all aligned

• 𝛀 𝑱 𝛀 = 𝐽𝒏𝛀

• Mixtures of coherent states

• Prove 𝒜2 σ𝑘 𝑝𝑘 |𝛀𝑘⟩⟨𝛀𝑘| ≤ 1 for any probability distribution 𝑝𝑘
• Not true if 𝑝𝑘 < 0

• Proven by σ𝑖=1
3 𝛀𝑘 𝐽𝑖 𝛀𝑙

2 ≥ 𝐽2 𝛀𝑘|𝛀𝑙
2

(J. Phys. Phot. 2021)



Spin coherence scale properties

3. Quantum/classical bound? Yes. What are the classical states?

• Also bounds distance to set of classical states from both above and below

(J. Phys. Phot. 2021)

𝒜2 = 1 𝒜2 ≫ 1 𝒜2 ≫ 1



Spin coherence scale properties

4. Nice for pure states? Yes. Metrology? Rotations.

𝒜2 |𝜓⟩⟨𝜓| =
1

𝐽
෍

𝑖=1

3

Δ2𝐽𝑖

• Quantum Fisher information for estimating rotation angle, 
averaged over all axes is 

1

4𝜋
න
0

2𝜋

න
0

𝜋

QFI(𝜃) 𝑑Θ sin Θ𝑑Φ =
4𝐽

3
𝒜2

• Average uncertainty for rotation angle 𝜃, averaged over all axes
1

4𝜋
න
0

2𝜋

න
0

𝜋

Var(𝜃) 𝑑Θ sin Θ𝑑Φ ≥
3

4𝐽𝒜2
(Huang et al., App. 

Phys. Rev. 2024)
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5. Relations to noise? Depolarization susceptibility. Monotonicity? Yes.

𝜌 →
𝕀

2𝐽 + 1

𝜕𝜌

𝜕𝑡
= −

1

2𝐽
෍

𝑖=1

3

[𝐽𝑖 , 𝐽𝑖 , 𝜌 ]

“SU(2)-invariant 

depolarization” (Rivas & Luis, 

Phys. Rev. A 2013)
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5. Relations to noise? Depolarization susceptibility. Monotonicity? Yes.

𝜌 →
𝕀

2𝐽 + 1

𝜕𝜌

𝜕𝑡
= −

1

2𝐽
෍

𝑖=1

3

[𝐽𝑖 , 𝐽𝑖 , 𝜌 ]

• Then 𝒜2 = −
1

2

𝜕 ln Tr(𝜌2)

𝜕𝑡

• Decreases monotonically with time/noise

“SU(2)-invariant 

depolarization” (Rivas & Luis, 

Phys. Rev. A 2013)
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6. Quasiprobability distributions? You bet. Especially for large 𝑱

• 𝑠-ordered quasiprobability distributions for SU(2)

• On the sphere

• From multipoles, spherical harmonics, Clebsch-Gordan coefficients

• Prove for large 𝐽:

𝑊𝜌 𝑡
𝑠

𝛀 ≈ 𝑊𝜌 0
𝑠−4𝑡

𝛀

• Just like loss susceptibility for Heisenberg-Weyl 𝑊𝜌(𝜂)
𝑠

𝛼 =
1

𝜂
𝑊
𝜌 1

1−
𝑠−1

𝜂 (𝛼/ 𝜂)
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• From multipoles, spherical harmonics, Clebsch-Gordan coefficients

• Prove for large 𝐽:

𝑊𝜌 𝑡
𝑠

𝛀 ≈ 𝑊𝜌 0
𝑠−4𝑡

𝛀

• Just like loss susceptibility for Heisenberg Weyl 𝑊𝜌(𝜂)
𝑠

𝛼 =
1

𝜂
𝑊
𝜌 1

1−
𝑠−1

𝜂 (𝛼/ 𝜂)

• Then 𝒜2 ≈ 4∫𝑊𝜌
−𝑠

𝛀
𝜕

𝜕𝑠
𝑊𝜌

𝑠
𝛀 𝑑𝛀 / ∫𝑊𝜌

−𝑠
𝛀′ 𝑊𝜌

𝑠
𝛀′ 𝑑𝛀′



Is there more?

• It works for more than spins!

• SU(𝑛), at least in the fundamental representation

• 𝑛-mode linear optics

• Symmetric combinations of 𝑛-level systems 

• E.g., boson sampling, three-dimensional polarization, polarimetry



Conclusions

• Coherence is about ambiguous properties being simultaneously present
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• Quantumness
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• Operator ordering sensitivity, macroscopic superpositionness have ties to…

• Metrology

• Quantumness

• Basis-independent coherence measures

• Noise susceptibility

• Quasiprobabilities

• …beyond Heisenberg-Weyl! All of these properties are

coherent.








