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• There is a unique definition of a Wigner function,

• Satisfies all properties we want (based on the Stratonovich-Weyl 

criteria).

Continuous domain

• There is no unique definition of a discrete Wigner function (DWF)

What about discrete quantum systems?

• Different definitions satisfy properties we want for different dimensions.

A Wigner function gap

Discrete domain

Lucky Antonopoulos

• Phase space is the infinite plane,

• Phase space is typically a dxd or 2dx2d (doubled) grid,

Phase-point operator, ෡𝑨

• መ𝐴 is Hermitian

• 𝑇𝑟[ መ𝐴]= 1

• The { መ𝐴} are 

orthogonal

Odd

Even
Prime

Prime-powered



3Some Results

• We have developed a general framework that can:

1) Construct every possible dxd discrete Wigner function (DWF) for a qudit of a given 

dimension,

2) Connect all such DWFs through linear maps

Lucky Antonopoulos

• Provide useful tools for system analysis through the DWFs, e.g., resource theories, or 

simulation of quantum circuits via phase-space methods



4

Discrete 

system

Continuous 

system

Continuous 

Wigner rep.

Discrete 

Wigner rep.

GKP 

encoding

START

Continuous 

Wigner function

Discretise

Discrete

phase-point operator 

(PPO)

• Resultant map

• Our Approach

Lucky Antonopoulos

Daniel Gottesman, Alexei Kitaev, and John Preskill. Encoding a qubit in an oscillator. Physical Review A, 64(1):012310, June 2001

A natural, parent function: 
The doubled discrete Wigner function (DWF)



5A natural, parent function: 
The doubled discrete Wigner function (DWF)

• This function contains redundancy:

4x the information than what is required for 

representing d-dimensional systems

Lucky Antonopoulos

𝑊෠𝑂
2𝑑

𝐦 ≔
1

2𝑑
𝑇𝑟 ෠𝑂Â 2𝑑 (𝐦)

መ𝐴 2𝑑 𝐦 ≔ ෠𝑉 𝐦 ෡R

𝐦 ∈ ℤ2𝑑
2

෠𝑉 𝐤 ≔ 𝑒−
2𝜋𝑖
2𝑑 𝑘1𝑘2  ෠Z𝑘2  ෡X𝑘1 • Can we construct dxd DWFs from the 

doubled one, free of redundancy?

• PPOs form an overcomplete basis (a frame) 

- J. Zak, “Doubling feature of the Wigner function: Finite phase space,” Journal of Physics A: Mathematical and Theoretical, vol. 44, no. 34, p. 345305, Aug. 2011.

- M. Saraceno, C. Miquel, and J. P. Paz, “Quantum computers in phase space,” Physical Review A, vol. 65, no. 6, p. 062309, Jun. 2002.

- U. Leonhardt, “Discrete Wigner function and quantum-state tomography,” Physical Review A, vol. 53, no. 5,pp. 2998–3013, May 1996.

- C. Miquel, J. P. Paz, and M. Saraceno, “Quantum computers in phase space,” Physical Review A, vol. 65,no. 6, p. 062309, Jun. 2002.

- Feng and S. Luo, “Connecting Continuous and Discrete Wigner Functions Via GKP Encoding,” International Journal of Theoretical Physics, vol. 63, no. 2, p. 

40,Feb. 2024
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A main result: theorem 1 (stencil theorem)

Lucky Antonopoulos

• Every valid M-DWF is generated by some stencil M

• Validity means that the stencil M (or M-DWF/M-PPO) satisfies criteria we derived based 

on the discrete analouge of the Stratonovich-Weyl criteria

Constructing to dxd functions

𝑊෠𝑂
𝑀 𝜶 ≔

ÂM(𝜶)  ≔ 𝑀∗ ⋆ Â 2𝑑 2𝜶 , 
𝜶 ∈ ℤ𝒅

𝟐

M-DWF:

M-PPO:

𝑀 ⋆ 𝑊෠𝑂
2𝑑

2𝜶

Stencil 𝑀 ∶  𝑃2𝑑 →  ℂ

• Every stencil M generates some valid M-DWF

=
1

𝑑
𝑇𝑟 Â𝑀(𝜶)† Ô
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Constructing to dxd functions

• Reduction stencil → dxd DWF valid for all odd d

Two stencil examples

• Coarse-grain stencil → dxd DWF valid for all even d

Â𝑀𝑅𝑀(𝜶)  ≔ ෠𝑉(2𝜶) ෡R

Â𝑀CGS(𝜶)  ≔
1

2
 ෍

𝒃∈ℤ𝟐
𝟐

෠𝑉(2𝜶) ෡R

- Leonhardt’s, 

- Gross’, 

- Wootters’ (prime d>2)

- Wootters’ (d = 2)

- Chatuverdi’s et al (d=2)

U. Leonhardt, Discrete Wigner function and quantum state tomography, Physical Review A 53, 2998 (1996). 

D. Gross, Hudson’s theorem for finite-dimensional quantum systems, Journal of Mathematical Physics 47, 122107 (2006).

W. K. Wootters, A Wigner-function formulation of finite state quantum mechanics, Annals of Physics 176, 1 (1987).

S. Chaturvedi, N. Mukunda, and R. Simon, Wigner distributions for finite-state systems without redundant phase-point operators, Journal of Physics A: 

Mathematical and Theoretical 43, 075302 (2010).
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• These projections project an arbitrary complex function f onto the space of functions 

in the image of P 

ҧf 𝐦 − d 𝐛 = −1 𝑚1𝑏2−𝑏2𝑚1−𝑑𝑏1𝑏2 ҧf 𝐦

𝐛 ∈ 𝑍𝟚
𝟚

f ∶  𝑃2𝑑 →  ℂP ∶  ℓ2(𝑃2𝑑) → ℓ2(𝑃2𝑑) 𝑃2𝑑 = ℤ𝟐𝒅 × ℤ𝟐𝒅

• These projected functions ҧf have the following quasi-periodicity:

Class of  unique Ms 
via projections

• Many stencils can produce the same M-DWF. 

• However, we have identified a unique class of 

stencils using projections.
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𝑀1 𝑀2

𝑀 ∶  𝑃2𝑑 →  ℂ

𝑀3 𝑀4 𝑀5 𝑀6 𝑀7 𝑀8

ഥM1
ഥM2

ഥM3

• Example of the uniqueness of stencils

Some stencils

Projected 

stencils

𝑀9 𝑀10

Class of unique Ms 
via projections
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• A function W can represent 

different operators O by varying the 

choice of M-PPO

• The O are then related by our linear 

map   (acts on operator space)
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• Each valid DWF W can represent a 

given operator O, by varying choice 

of M

• The DWFs are then related by our 

linear map 𝖤 (acts on function space)

𝘌𝑀1→2



12Linear mapsLucky Antonopoulos

Theorem 3 in our paper

• These invertible linear maps further unify all valid DWFs (for a given dimension) into a single equivalence 

class for a qudit, making difference between DWFs purely representational

• Enable     - representation-independent benchmarking of quantum resource measures (e.g., negativity)

- systematic comparisons of  features depending on the chosen stencil M

• Help identify representation-independent features

𝘌𝑀1→2
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Summary

• Use a naturally occurring, doubled discrete Wigner function (DWF) as our parent function

• Created a framework for constructing and unifying all dxd discrete Wigner functions

Lucky Antonopoulos

• Defined validity criteria on the stencils---also in the Fourier domain, related to discrete Characteristic 

functions

• Future work may explore connecting our stencil framework to other 

quasidistributions (relaxing one validity criteria leads to all valid discrete 

Kirkwood-Dirac quasidistributions)

https://arxiv.org/abs/2503.09353

Our Paper

• Identified a unique class of stencils M via projections

• Derived a set of linear maps that define equivalence classes and enable 

 representation-independent benchmarking



14Extras: Redundancy

Resultant doubled discrete 

Wigner function

Lucky Antonopoulos

• Operators for d-dimensional systems have d^2 parameters

d x d sized phase spaces

• d^2 unique phase-point operators are needed

2d x 2d (doubled) phase spaces

• There are 4d^2 lattice points and hence 4d^2 

phase-point operators (not all unique)

• Doubled phase spaces have a four-fold 

redundancy

• 𝐴 2𝑑 𝐦 + d 𝐛  = −1 𝑚1𝑏2−𝑏2𝑚1−𝑑𝑏1𝑏2𝐴 2𝑑 𝐦

• 𝑊෠𝑂
2𝑑

𝐦 + d 𝐛  = −1 𝑚1𝑏2−𝑏2𝑚1−𝑑𝑏1𝑏2𝑊෠𝑂
2𝑑

𝐦

𝐛 ∈ 𝑍𝟚
𝟚

𝑊෠𝑂
2𝑑

𝐦 ≔
1

2𝑑
𝑇𝑟 ෠𝑂Â 2𝑑 (𝐦)

መ𝐴 2𝑑 𝐦 ≔ ෠𝑉 𝐦 ෡R

𝐦 ∈ ℤ2𝑑
2

෠𝑉 𝐤 ≔ 𝑒−
2𝜋𝑖
2𝑑 𝑘1𝑘2  ෠Z𝑘2  ෡X𝑘1



15Extras: Criteria
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