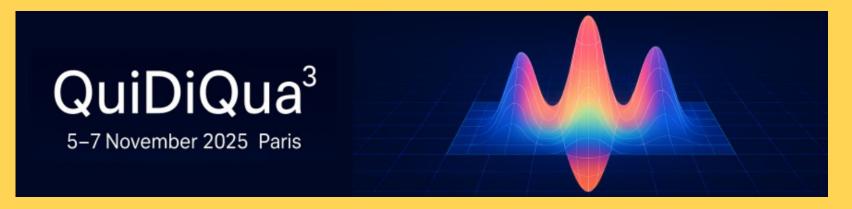
A grand unification of all dxd discrete Wigner functions

Authors:

Lucky Antonopoulos¹, Dominic Lewis¹, Jack Davis², Nicholas Funai¹, Nicolas Menicucci¹

¹Centre for Quantum Computation and Communication Technology, School of Science, RMIT University, Melbourne, Victoria 3000, Australia ²DIENS, École Normale Supérieure, PSL University, CNRS, INRIA, 45 rue d'Ulm, Paris 75005, France



A Wigner function gap

Continuous domain

Phase-point operator, \widehat{A}

- Phase space is the infinite plane,
- There is a unique definition of a Wigner function,
- Satisfies all properties we want (based on the Stratonovich-Weyl criteria).

- \hat{A} is Hermitian
- $Tr[\hat{A}] = 1$
- The $\{\hat{A}\}$ are orthogonal

What about *discrete* quantum systems?

Discrete domain

- Phase space is typically a dxd or 2dx2d (doubled) grid,
- There is no unique definition of a discrete Wigner function (DWF)
- Different definitions satisfy properties we want for different dimensions.

Odd

Even

Prime

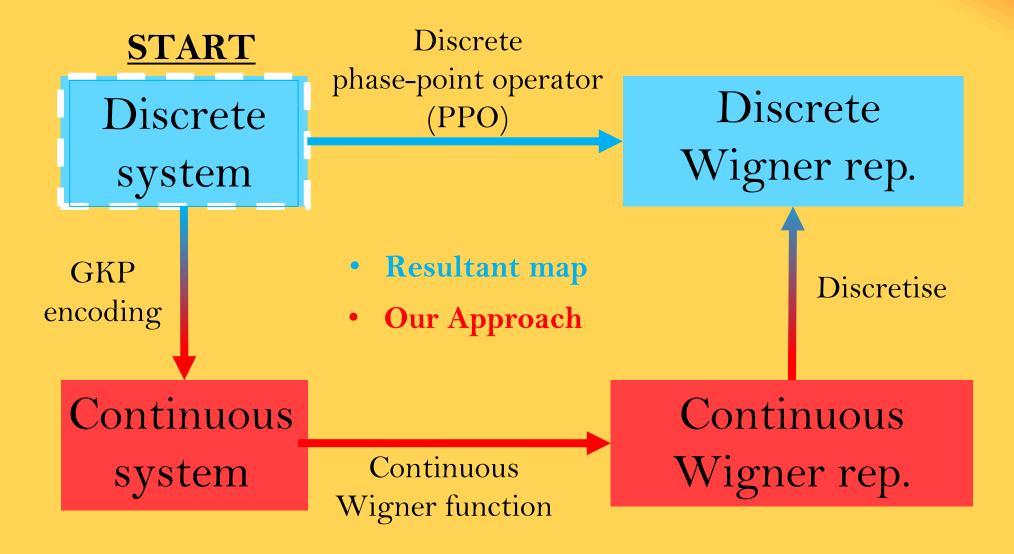
Prime-powered

Some Results

- We have developed a general framework that can:
- 1) Construct every possible dxd discrete Wigner function (DWF) for a qudit of a given dimension,
- 2) Connect all such DWFs through linear maps

• Provide useful tools for system analysis through the DWFs, e.g., resource theories, or simulation of quantum circuits via phase-space methods

A natural, parent function: The doubled discrete Wigner function (DWF)



A natural, parent function: The doubled discrete Wigner function (DWF)

$$W_{\hat{O}}^{(2d)}(\mathbf{m}) \coloneqq \frac{1}{2d} Tr[\hat{O}\hat{A}^{(2d)}(\mathbf{m})]$$

representing d-dimensional systems

$$\hat{A}^{(2d)}(\mathbf{m}) \coloneqq \hat{V}(\mathbf{m})\widehat{\mathbf{R}}$$

$$\mathbf{m} \in \mathbb{Z}_{2d}^2$$

$$\widehat{V}(\mathbf{k}) \coloneqq e^{-\frac{2\pi i}{2d}k_1k_2} \, \widehat{\mathbf{Z}}^{k_2} \, \widehat{\mathbf{X}}^{k_1}$$

• Can we construct **dxd** DWFs from the doubled one, **free of redundancy**?

- J. Zak, "Doubling feature of the Wigner function: Finite phase space," Journal of Physics A: Mathematical and Theoretical, vol. 44, no. 34, p. 345305, Aug. 2011.
- M. Saraceno, C. Miquel, and J. P. Paz, "Quantum computers in phase space," Physical Review A, vol. 65, no. 6, p. 062309, Jun. 2002.
- U. Leonhardt, "Discrete Wigner function and quantum-state tomography," Physical Review A, vol. 53, no. 5,pp. 2998–3013, May 1996.
- C. Miquel, J. P. Paz, and M. Saraceno, "Quantum computers in phase space," Physical Review A, vol. 65,no. 6, p. 062309, Jun. 2002.
- Feng and S. Luo, "Connecting Continuous and Discrete Wigner Functions Via GKP Encoding," International Journal of Theoretical Physics, vol. 63, no. 2, p.

40,Feb. 2024

Constructing to dxd functions

A main result: theorem 1 (stencil theorem)

M-DWF:
$$W_{\hat{O}}^{M}(\boldsymbol{\alpha}) \coloneqq \left(M \star W_{\hat{O}}^{(2d)}\right)(2\boldsymbol{\alpha}) = \frac{1}{d}Tr[\hat{A}^{M}(\boldsymbol{\alpha})^{\dagger} \hat{O}]$$

M-PPO:
$$\hat{A}^{M}(\alpha) := (M^* \star \hat{A}^{(2d)})(2\alpha),$$
 Stencil $M: P_{2d} \to \mathbb{C}$ $\alpha \in \mathbb{Z}_d^2$

- Every valid M-DWF is generated by some stencil M
- Every stencil M generates some valid M-DWF
- Validity means that the stencil M (or M-DWF/M-PPO) satisfies criteria we derived based on the discrete analouge of the Stratonovich-Weyl criteria

Constructing to dxd functions

Two stencil examples

Reduction stencil \rightarrow dxd DWF valid for all odd d

$$\hat{A}^{M_{RM}}(\boldsymbol{\alpha}) := \hat{V}(2\boldsymbol{\alpha}) \, \hat{R}$$

- Leonhardt's,
- Gross',
- Wootters' (prime d>2)

Coarse-grain stencil → dxd DWF valid for **all even d**

$$\hat{A}^{M_{\text{CGS}}}(\boldsymbol{\alpha}) := \frac{1}{2} \sum_{\boldsymbol{b} \in \mathbb{Z}_2^2} \hat{V}(2\boldsymbol{\alpha}) \, \widehat{R}$$

- Wootters' (d = 2)Chatuverdi's et al (d=2)

- U. Leonhardt, Discrete Wigner function and quantum state tomography, Physical Review A 53, 2998 (1996).
- D. Gross, Hudson's theorem for finite-dimensional quantum systems, Journal of Mathematical Physics 47, 122107 (2006).
- W. K. Wootters, A Wigner-function formulation of finite state quantum mechanics, Annals of Physics 176, 1 (1987).
- S. Chaturvedi, N. Mukunda, and R. Simon, Wigner distributions for finite-state systems without redundant phase-point operators, Journal of Physics A: Mathematical and Theoretical 43, 075302 (2010).

Class of unique Ms via projections

$$P: \ell^2(P_{2d}) \to \ell^2(P_{2d})$$

$$P_{2d} = \mathbb{Z}_{2d} \times \mathbb{Z}_{2d}$$

$$f: P_{2d} \to \mathbb{C}$$

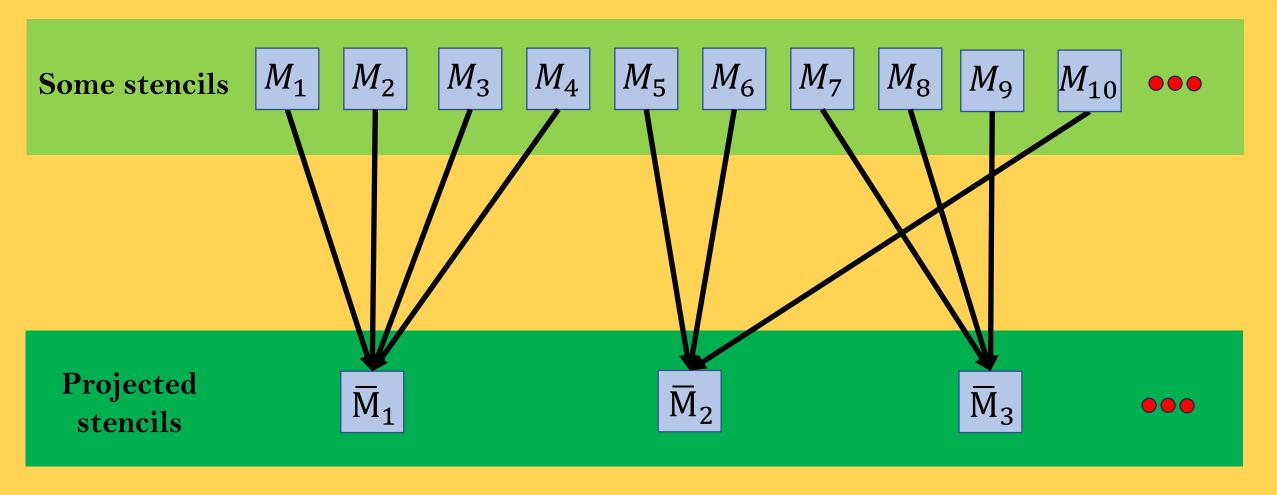
- Many stencils can produce the same M-DWF.
- However, we have identified a unique class of stencils using projections.
- These projections project an arbitrary complex function f onto the space of functions in the image of P
- These projected functions f have the following quasi-periodicity:

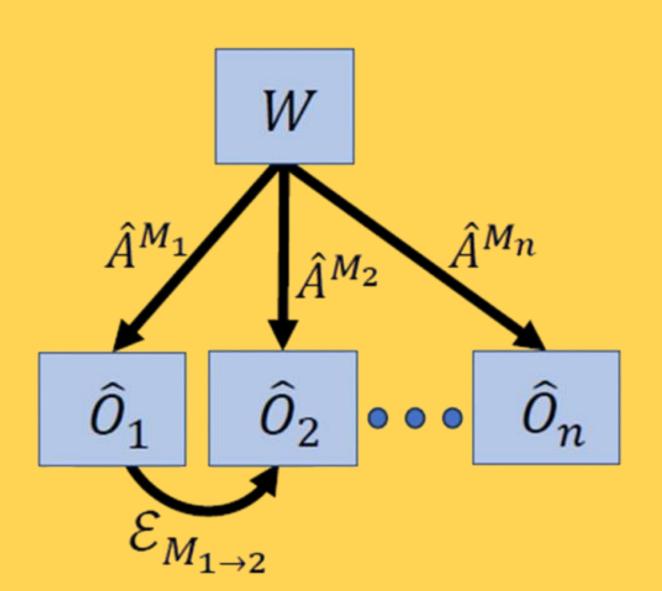
$$\overline{\mathbf{f}}(\mathbf{m} - \mathbf{d} \mathbf{b}) = (-1)^{m_1 b_2 - b_2 m_1 - db_1 b_2} \overline{\mathbf{f}}(\mathbf{m})$$
$$\mathbf{b} \in \mathbb{Z}_2^2$$

Class of unique Ms via projections

 $M: P_{2d} \to \mathbb{C}$

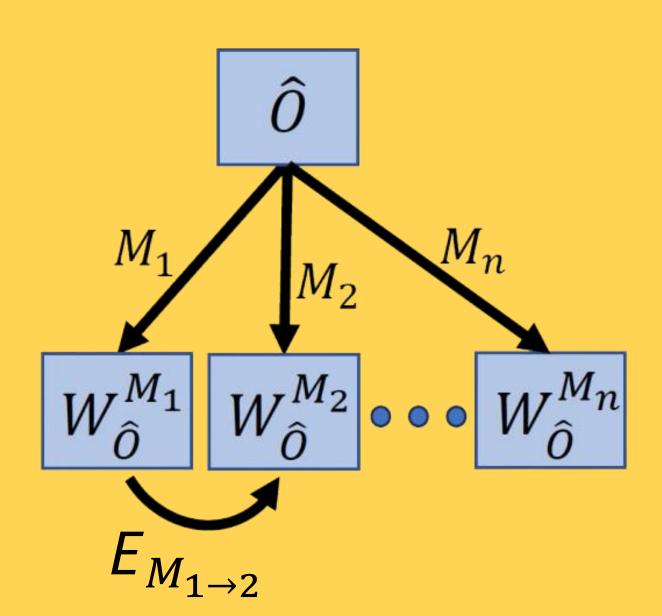
• Example of the uniqueness of stencils





• A function W can represent different operators O by varying the choice of M-PPO

• The O are then related by our linear map ϵ (acts on operator space)

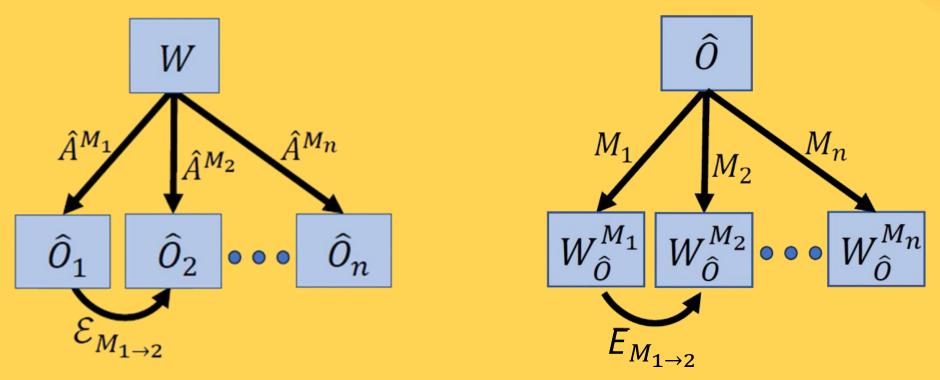


• Each valid DWF W can represent a given operator O, by varying choice of M

• The DWFs are then related by our linear map E (acts on function space)

Linear maps

Theorem 3 in our paper



- These invertible linear maps **further unify all valid DWFs** (for a given dimension) into a **single equivalence class** for a qudit, making difference between DWFs purely representational
- Help identify representation-independent features
- Enable representation-independent benchmarking of quantum resource measures (e.g., negativity)
 - systematic comparisons of features depending on the chosen stencil M

Summary

- Use a naturally occurring, doubled discrete Wigner function (DWF) as our parent function
- Created a framework for **constructing and unifying all** dxd discrete Wigner functions
- Defined validity criteria on the stencils—also in the Fourier domain, related to discrete Characteristic functions
- Identified a unique class of stencils M via projections
- Derived a set of **linear maps** that define equivalence classes and enable representation-independent benchmarking
- Future work may explore connecting our stencil framework to other quasidistributions (relaxing one validity criteria leads to all valid discrete **Kirkwood-Dirac** quasidistributions)

Our Paper

Extras: Redundancy

Resultant doubled discrete Wigner function

$$W_{\hat{O}}^{(2d)}(\mathbf{m}) \coloneqq \frac{1}{2d} Tr[\hat{O}\hat{A}^{(2d)}(\mathbf{m})]$$

$$\hat{A}^{(2d)}(\mathbf{m}) \coloneqq \hat{V}(\mathbf{m})\hat{R}$$

$$\mathbf{m} \in \mathbb{Z}_{2d}^2$$

$$\widehat{V}(\mathbf{k}) \coloneqq e^{-\frac{2\pi i}{2d}k_1k_2} \, \widehat{\mathbf{Z}}^{k_2} \, \widehat{\mathbf{X}}^{k_1}$$

d x d sized phase spaces

- Operators for d-dimensional systems have d^2 parameters
- d^2 unique phase-point operators are needed

2d x 2d (doubled) phase spaces

- There are 4d^2 lattice points and hence 4d^2 phase-point operators (not all unique)
- Doubled phase spaces have a four-fold redundancy

•
$$A^{(2d)}(\mathbf{m} + d\mathbf{b}) = (-1)^{m_1b_2 - b_2m_1 - db_1b_2}A^{(2d)}(\mathbf{m})$$

•
$$W_{\hat{0}}^{(2d)}(\mathbf{m} + d \mathbf{b}) = (-1)^{m_1b_2 - b_2m_1 - db_1b_2}W_{\hat{0}}^{(2d)}(\mathbf{m})$$

 $\mathbf{b} \in Z_2^2$

Extras: Criteria

A1: (Hermiticity) $\hat{A}(\alpha) = \hat{A}(\alpha)^{\dagger}$.

A2: (Normalisation) $\text{Tr}[\hat{A}(\alpha)] = 1$.

A3: (Orthogonality) $\text{Tr}[\hat{A}(\alpha)^{\dagger}\hat{A}(\beta)] = d \Delta_d[\alpha - \beta].$

A4: (WHDO covariance) $\hat{V}(k)\hat{A}(\alpha)\hat{V}^{\dagger}(k) = \hat{A}(\alpha + k)$.

M1: $\bar{M}(\boldsymbol{m})^* = \bar{M}(\boldsymbol{m}),$

M2: $\sum_{\boldsymbol{m}} \bar{M}(\boldsymbol{m}) = 1$,

M3: $(\bar{M} \star \bar{M})(2\alpha) = \Delta_d[\alpha]$.

 $\check{M}1: \bar{\check{M}}(\boldsymbol{m})^* = \bar{\check{M}}(-\boldsymbol{m}),$

 $\check{M}2: \ \bar{\check{M}}(\mathbf{0}) = \frac{1}{2d},$

 $|\check{M}3: |\bar{\check{M}}(\boldsymbol{m})| = \frac{1}{2d}.$