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A Wigner function gap

What about discrete quantum systems?

Discrete domain

Odd
* Phase space 1s typically a dxd or 2dx2d (doubled) grid, Even
* There 1s no unique definition of a discrete Wigner function (DWF) Prime

: .. . : , , . Prime-powered
* Different definitions satisty properties we want for different dimensions.
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Some Results 3™

* We have developed a general framework that can:

1) Construct every possible dxd discrete Wigner function (DWF) for a qudit of a given
dimension,

2) Connect all such DWFs through linear maps

* Provide useful tools for system analysis through the DWFs, e.g., resource theories, or
simulation of quantum circuits via phase-space methods




Lucky Antonopoulos A natural, parent function:
The doubled discrete Wigner function (DWF)

O

START Discrete
: phase-point operator .
Discrete (PPO) Discrete
— .

system Wigner rep.

* Resultant
GKI.) R Discretise
encoding * Our Approach

Continuous
Wigner function

Daniel Gottesman, Alexei Kitaev, and John Preskill. Encoding a qubit in an oscillator. Physical Review A, 64(1):012310, June 2001



Lucky Antonopoulos A natural, parent function: 5™
The doubled discrete Wigner function (DWF)

ngd) (m) = i TT[@ AQd) (m)] * This tunction contains redundancy:
2d 4x the information than what is required for
representing d-dimensional systems
ACD(m) := 7(m)R
2 —* ¢ PPOs form an overcomplete basis (a frame)
m € 75,4
21l * (Can we construct dxd DWF's trom the

(k) = e” 2a %2 Zk2 ks
doubled one, free of redundancy?

- J. Zak, “Doubling feature of the Wigner function: Finite phase space,” Journal of Physics A: Mathematical and Theoretical, vol. 44, no. 34, p. 345305, Aug. 2011.
- M. Saraceno, C. Miquel, and J. P. Paz, “Quantum computers in phase space,” Physical Review A, vol. 65, no. 6, p. 062309, Jun. 2002.

- U. Leonhardt, “Discrete Wigner function and quantum-state tomography,” Physical Review A, vol. 53, no. 5,pp. 2998—3013, May 1996.

- C. Miquel, J. P. Paz, and M. Saraceno, “Quantum computers in phase space,” Physical Review A, vol. 65,no. 6, p. 062309, Jun. 2002.

- Feng and S. Luo, “Connecting Continuous and Discrete Wigner Functions Via GKP Encoding,” International Journal of Theoretical Physics, vol. 63, no. 2, p.

40,Feb. 2024
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Constructing to dxd functions

A main result: theorem 1 (stencil theorem)

1 . X
M-DWF: W, (a) := (M * WéZd)) Qa) = ETT[AM (a)t O]

Stencil M : P,; —» C
a € 75

mpro:  AM(a) = (M* x AZD)(2a),

* Every valid M-DWTF 1s generated by some stencil M

* Every stencil M generates some valid M-DWF

* Validity means that the stencil M (or M-DWF/M-PPO) satisfies criteria we derived based
on the discrete analouge of the Stratonovich-Weyl criteria
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Constructing to dxd functions

Two stencil examples
 Reduction stencil 2 dxd DWTF valid for all odd d

Leonhardt’s,
Gross’,
Wootters’ (prime d>2)

AMrM () =V (2a) R

* Coarse-grain stencil 2 dxd DWF valid for all even d

- Wootters’ (d = 2)

A 1 (7 15}
AMCGS (a) — E 2 V(Za) R - Chatuverdi’s et al (d=2)

U. Leonhardt, Discrete Wigner function and quantum state tomography, Physical Review A 53, 2998 (1996).

D. Gross, Hudson’s theorem for finite-dimensional quantum systems, Journal of Mathematical Physics 47, 122107 (2006).

W. K. Wootters, A Wigner-function formulation of finite state quantum mechanics, Annals of Physics 176, 1 (1987).

S. Chaturvedi, N. Mukunda, and R. Simon, Wigner distributions for finite-state systems without redundant phase-point operators, Journal of Physics A:
Mathematical and Theoretical 43, 075302 (2010).
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Class of unique Ms
via DrO]ectlons

P: £2(Pyq) = £%(Pag) Pyg = Zogq X Zpq f: Py > C

* Many stencils can produce the same M-DWF.

* However, we have identified a unique class of
stencils using projections.

* These projections project an arbitrary complex function f onto the space ot functions
in the image of P

e These projected functions f have the following quasi-periodicity:

f(m — d b) = (—1)M1bz-bzmi=dbib2f(m)
b e Z5
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Class of unique Ms v: p N
via projections "7 2d

* Example of the uniqueness of stencils

Some stencils (M1 | M, | (M3| (My| Mg| [Mg| (M;| (Mg| |My| M;, eee
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Linear maps

* A function W can represent

different operators O by varying the
choice of M-PPO

= * The O are then related by our linear
0 1 0 2 O0O0 0 map € (acts on operator space)
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Lucky Antonopoulos Line ar map S

&)

* Each valid DWFEF W can represent a
given operator O, by varying choice

1\41 Mn of M

M M M * The DWFs are then related by our
WA - WA . O 0O = n linear map E (acts on function space)
O O 0,
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Linear maps

Theorem 3 1n our paper

Q»

M M
1 M2 n
- " A~ M
0, O, |[eee| O, Wg/ll Oiwzooo W@n
E
M1 EM1—>2

* These invertible linear maps further unify all valid DWFs (for a given dimension) into a single equivalence
class for a qudit, making difference between DWF's purely representational

* Help identify representation-independent features

* Enable - representation-independent benchmarking of quantum resource measures (e.g., negativity)

- systematic comparisons of features depending on the chosen stencil M
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Summary

Use a naturally occurring, doubled discrete Wigner function (DWF) as our parent function

Created a framework for constructing and unifying all dxd discrete Wigner functions

Defined validity criteria on the stencils---also in the Fourier domain, related to discrete Characteristic
functions

Identified a unique class of stencils M via projections

Derived a set of linear maps that define equivalence classes and enable
representation-independent benchmarking

Future work may explore connecting our stencil framework to other
quasidistributions (relaxing one validity criteria leads to all valid discrete
Kirkwood-Dirac quasidistributions)

Our Paper

https://arxiv.org/abs/2503.09353
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Extras: Redundancy 14

Resultant doubled discrete
Wigner function

1
(2d) . 23 A
W5 (m) = F Tr[0ARD (m)]

ACD (m) = 7(m)R

m € 75,

N 211 n .
V(K) := e~ 2a*1¥2 Zk2 Xka

d x d sized phase spaces

Operators for d-dimensional systems have d*2 parameters

d”2 unique phase-point operators are needed

2d x 2d (doubled) phase spaces

There are 4d”2 lattice points and hence 4d”"2
phase-point operators (not all unique)

Doubled phase spaces have a four-fold
redundancy

WOEZd)(m +db) = (_1)m1b2—b2m1—db1b2W0£2d) (m)
b € Z3
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Extras: Criteria

Al: (Hermiticity) A(a) = 4[::1]

A2: (Normalisation) Tr| A( ()] =

A3: (Orthogonality) Tr[A(a)TA(S3 ] =d Agla — 3.
(

A4: (WHDO covariance) V (k)A(a ji”*{ﬁ:} = A(a + k).

P

M1: M (m)* = M(m). M1 M(m)* = M(-m),

_ . < 1
M2: ST M(m) =1, M2: M(0) = 57

M3: (M * M)(2a) = Aylal. M3: |J\ff(m)| =
. 5
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