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How do we measure a system’s state?

• But in quantum physics we have Heisenberg’s measurement-disturbance relation:

Δx Δp ≥ ħ/2

• A classical particle’s state is given by its position x and momentum p

• How can we determine a quantum state?

• This question stumped many great thinkers: Wigner, Fano, Dirac,…

source: xkcd
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• Measure x precisely and we disturb p so that p→∞

➢ Can not know x and p perfectly at the same time

Example of the Heisenberg measurement-disturbance relation

What if we measure x gently?
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Fuel Meter: Von Neumann: Model both the measured system 

and the measurement apparatus as quantum 

systems.

e.g. The pointer needle on a fuel gauge has a 

wavefunction and so does the gas tank.
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Fuel Meter:

System+Pointer=ci|ai|Pi

Born Rule!

Von Neumann: Model both the measured system 

and the measurement apparatus as quantum 

systems.

e.g. The pointer needle on a fuel gauge has a 

wavefunction and so does the gas tank.

Good measurements
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Fuel Meter:

Real part of AW is the position shift of the pointer

Imaginary part of Aw is the momentum shift of the pointer

Average Value of A ≡ Weak Value:

<b|A|>
AW=

<b|>

< |A|>
AW=

< |>

𝐴𝑊 =
1

𝑔𝑡
𝑥 + 𝑖

2𝜎2

ℏ
𝑝

ψ|Â|ψ=
1

𝑔𝑡
 𝑥𝑝𝑜𝑖𝑛𝑡𝑒𝑟



Average shift of the pointer when B=b

 

𝐴𝑊 =
2𝜎

𝑔𝑡

1

2𝜎
𝑥 𝑃𝑜𝑖𝑛𝑡𝑒𝑟 + 𝑖

𝜎

ℏ
𝑝 𝑃𝑜𝑖𝑛𝑡𝑒𝑟

The weak value and the lowering operator

𝜎

Harmonic oscillator lowering operator 

                    𝑎 =
1

2𝜎
𝑥 + 𝑖

𝜎

ℏ
𝑝

The weak value is proportional to the lowering operater 𝑎:

 𝐴𝑊 =
2𝜎

𝑔𝑡
𝑎 𝑃𝑜𝑖𝑛𝑡𝑒𝑟

• Mystery: why is the lowering operator appearing?

Lundeen & Resch, Phys. 
Lett. A 334 (2005) 337–344



• What if we do a weak measurement of X, and then make a strong 

measurement of P?

i.e. A = |xx|=π, Initial state= |ψ, Strong measurement result P=p

Average shift of 

the pointer:

πw= p|xx|ψ
p|ψ

And if p=0, =  k·ψ(x)

Example: Gently measure X so that you don’t disturb P

• The average shift of the pointer (i.e. rotation of the polarization) is 

proportional to the wavefunction,

πw=
√Prob(p=0)

1/√2π ∙x|ψ

<b|A|>
AW=

<b|>

< |A|>
AW=

< |>

Lundeen Nature, 474, 188 (2011)
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Direct Measurement of the Wavefunction
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(      -       ) = 𝑆𝑦   Im(x)

LHC
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(      -     ) = 𝑆𝑥   Re(x)

+

• Weakly measure |xx| = ො𝜋𝑥 then strongly measure p 

•  Keep only the photons found with p=0 (post-selection!)
Imbalance in circular 

polarizations

Rotation of linear 

polarization

Beam

Splitter

• The average result of the weak measurement is the real and 

imaginary components of the wavefunction

Spin Lowering Operator

𝑆𝑧
− = 𝑆𝑥 − 𝑖𝑆𝑦

〈Â〉W=
(gtħ)

2〈Ŝz〉-

Lundeen & Resch, Phys. 
Lett. A 334 (2005) 337–344

𝐻𝑖𝑛𝑡 = 𝑔 መ𝑆𝑦 ො𝜋𝑥



|ψ 

Im[ψ]
Re[ψ]

• Demonstrate method with Ψ 𝑥  of photons exiting a single-mode fibre 

Phase

Prob(x)|ψ(x)|2

Lundeen Nature, 474, 188 (2011)

Direct Measurement of the Wavefunction

• The two signals directly give Im[ψ] and Re[ψ].
• Direct measurement accurately shows phase and magnitude of ψ(x)

(      -       )  Im(x) 

(      -     )  Re(x)
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Weak Measurement

E    ¼    ½    ¾    F
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In the cases where result of B is b

Weak measurement W of A, 

post-selecting on b

Weak Measurement without post-selection

AW

S
tro

n
g

B|ψ

• A weak-strong measurement of AB is just the regular quantum expectation value.

• If AB don’t commute, 𝐴𝑊𝐵𝑆  = 𝑇𝑟 𝐴𝐵𝜌  can be complex

Average Value of A:

<b|A|>
AW=

<b|>

< |A|>
AW=

< |>

E    ¼    ½    ¾    F

𝐴𝑊𝐵𝑆 = 𝜓|𝐴𝐵|𝜓 = 𝑇𝑟 𝐴𝐵𝜌

Weak Measurement W of A 

and strong S of B

S
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n
g

B|ψ

Average Value of AB ≡ Weak Average:



The weak average is 𝐴𝑊𝐵𝑆 = 𝜓 𝐴𝐵 𝜓 = 𝐴𝐵

The weak average is found by 

𝐴𝑊𝐵𝑆 =
2𝜎

𝑔𝑡
𝑎𝑃𝑜𝑖𝑛𝑡𝑒𝑟  𝐵𝑆𝑦𝑠𝑡𝑒𝑚 𝑃𝑜𝑖𝑛𝑡𝑒𝑟+𝑠𝑦𝑠𝑡𝑒𝑚

Weak average and the lowering operator

• The weak average is a correlation between the pointer and system

𝑅𝑒 𝐴𝑊𝐵𝑆 ∝ 𝑥𝑃𝑜𝑖𝑛𝑡𝑒𝑟  𝐵𝑆𝑦𝑠𝑡𝑒𝑚 𝑃𝑜𝑖𝑛𝑡𝑒𝑟+𝑠𝑦𝑠𝑡𝑒𝑚

𝐼𝑚 𝐴𝑊𝐵𝑆 ∝ 𝑝𝑃𝑜𝑖𝑛𝑡𝑒𝑟  𝐵𝑆𝑦𝑠𝑡𝑒𝑚 𝑃𝑜𝑖𝑛𝑡𝑒𝑟+𝑠𝑦𝑠𝑡𝑒𝑚



If A and B are projectors 𝜋𝐴=𝑎 and 𝜋𝐵=𝑏 then the expectation values are 
probabilities.

𝑃𝑟𝑜𝑏 𝑏 = 𝜋𝑏   so…. 𝑃𝑟𝑜𝑏 𝑎, 𝑏 = 𝜋𝑎𝜋𝑏 , the weak average

So by Baye’s law: 𝑃𝑟𝑜𝑏 𝑎 𝑏 =
𝑃𝑟𝑜𝑏 𝑎,𝑏

𝑃𝑟𝑜𝑏 𝑏
=

𝜓 𝜋𝑎𝜋𝑏 𝜓

𝜓 𝜋𝑏 𝜓
=

𝑏 𝜋𝑎 𝜓

𝑏|𝜓
, the weak value.

Aside: The weak value and weak average obey Baye’s law

If the weak average 𝜋𝑎𝜋𝑏 𝑊 = 𝑃𝑟𝑜𝑏 𝑎, 𝑏  
then the weak value 𝜋𝑎 𝑊,𝑏 = 𝑃𝑟𝑜𝑏 𝑎 𝑏

• The weak value + weak average obey Baye’s law despite being complex quantities.
• The strange formula for the weak value ⟺ conditional probability.

H. F. Hofmann, New Journal of Physics, 14, 043031 (2012).

Steinberg, A. M., Phys. Rev. A 52, 32 (1995).
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No post-selection: Joint measurement of X and every P

•Joint measurement of 𝜋𝑥 = |𝑥𝑥| and 𝜋𝑝 = |𝑝𝑝| gives the Kirkwood-Dirac Distribution:

 𝐾𝐷 𝑥, 𝑝 = 𝜋𝑥 𝜋𝑝 = Tr[𝜋𝑥 𝜋𝑝 
𝜌]

Polarizer + λ/4 = 45°, - 45°, RHS, LHS

Weak 

measurement of 

|xx| 

Strong 

measurement of p 

(all values)

Lundeen PRL 108, 

070402 (2012), 

Bamber PRL 112, 

070405 (2014)

Salvail et al. Nature 

Photonics (2013)



Direct measurement of the Kirkwood - Dirac Distribution
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p → x’

Kirkwood-Dirac Distribution,𝐾𝐷(𝑥, 𝑝)  =  Tr[𝜋𝑥 𝜋𝑝 
𝜌]
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• Simple generalization allows us to completely measure mixed states

Lundeen PRL 108, 

070402 (2012), 

Bamber PRL 112, 

070405 (2014),



Direct Measurement of an Entangled Quantum State

|ψ=  1      |IO     + 1     |OI     -1      |OO   + 0     |II 
Theoretical Quantum State:

O
O OI I



Problem: To directly measure this we need to measure two-particle observables

e.g., |IO〉〈IO| = Â1Â2 =|I〉〈I|1 |O〉〈O|2 

For two-particle weak measurements we need a strong optical nonlinearity to 

implement a Von Neuman measurement interaction (Hint=gPÂ1Â2).         

Two-Particle Weak Measurements

|ψ=  1      |IO     + 1     |OI     -1      |OO   + 0     |II 

Solution:  Conduct two single-particle weak measurements and study pointer correlations.

 𝐻𝑖𝑛𝑡 = 𝑔 መ𝑆1𝑦Â1 + 𝑔 መ𝑆2𝑦Â2

〈Â1Â2 〉= (gtħs)2

〈Ŝ1xŜ2x 〉

Two-particle strong measurement with

spin pointers:

Two-particle weak measurement with

spin pointers and post-selection

Resch & Steinberg, PRL 92,130402 (2004)

Lundeen & Resch, Phys. Lett. A 334 (2005) 337–344

Spin Lowering Operators

〈Â1Â2 〉W=
(gtħs)2

〈Ŝ1Ŝ2 〉fi
- -



Directly Measuring Entangled States

BS1-

BS2-

O-

C-

BS1+

BS2+

I+

e+ e-

I-
O+

D+C+ D-

W
BS1-

BS2-

O-

C-

BS1+

BS2+

I+

e+ e-

I-
O+

D+C+ D-

W

|ψ =  1      |IO     + 1     |OI     -1      |OO   + 0     |II 

Theoretical Quantum State:

|ψ = πIOW |IO + πOIW |OI + πOOW |OO + πIIW |II 
Direct measurement of the Quantum State:

|ψ = 0.663 |IO + 0.721 |OI    -0.758  |OO + 0.243|II 
Experimentally we got:

• Direct measurement of the wavefunction works for inherently 

quantum systems (i.e. entangled particles).

measure e.g. πIO =  |Inner OuterInner Outer| = |IOIO| =|I〉〈I|1 |O〉〈O|2 

• Weakly measure where the particle pair is in Hardy’s Paradox, i.e., in the subensemble of 

photon pairs that exit a the Dark (D) detectors (post-selection on complementary observable)



Average result is Tr[πx πp πx’ ρin] = ρin(x,x’)

• Jointly weakly measure X then P then X again

Theory: Lundeen & Bamber 
PRL 108, 070402 (2012).

|xx| |x’x’|

πx πx'
|pp|

πpρin 

• We can know any chosen element ρin(x,x’) of the density matrix e.g. a particular 
coherence, entanglement witnesses, etc.

Directly Measuring the Density Matrix

How can we measure this?
 

Step 1: 𝐻𝑖𝑛𝑡 = 𝑔𝑃1πx  using pointer 1
Step 2: 𝐻𝑖𝑛𝑡 = 𝑔𝑃2πp   using pointer 2
Step 3: strongly measure πx’

Step 4: 𝑎1𝑎2𝜋𝑥′ 𝑠𝑦𝑠𝑡𝑒𝑚+𝑝𝑜𝑖𝑛𝑡𝑒𝑟 ∝ 𝑇𝑟[𝜋𝑥 𝜋𝑝 
𝜋𝑥′ 

𝜌𝑖𝑛] 



Direct Measurement of the Density Matrix

We measured the density matrix of a polarized photon
Testing states along path 3 in the Poincaré sphere

• The measured and expected purities match
• The trace distance between the expected and measured density matrices is less than 0.05

Thekkadath PRL 117, 120401 (2016) 
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Even more direct?

• We switch back and forth between measuring Im[𝜓 𝑥 ] and Re 𝜓 𝑥
• Can we measure both in each trial?
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Even more direct: Simultaneous readout

• Solution: Weak measurements do not disturb each other 
∴ Weakly measure twice in row, once for Im[𝜓 𝑥 ] and once Re 𝜓 𝑥

• Need two readouts (i.e. ‘pointers’) or a two-dimensional readout.



Quantum 5, 599 (2021).
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Better Joint Measurements of AB 

• Needed one readout system (‘pointer’) per observable 
• Here, only need a single readout system for multiple projectors, ۧ𝑎 𝑎ۦ , ۧ𝑏 𝑏ۦ
• But, need to measure more readout system observables
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Even more direct: Simultaneous readout

• Want simple (i.e. ‘direct’) readout of a single pointer system
• Solution: Measure B scaled by the outcome of the measurement of A
• Condition the strength of the measurement of B on the outcome of A.

መ𝐴 ෠𝐵

ො𝑞1

Theory: Lundeen, Bamber, PRL 108, 070402 (2012)
Previous talk by Michael Weil



Conclusions

1. Measurements of complementary variables by weak measurement give the 
quantum state of a system, wave-function or Kirkwood-Dirac

2. Generalization of two-particle correlation measurements to weak von-
Neumann interactions allows us to measure entangled states

3. Generalization of three-time correlation measurements to weak von Neumann 
interactions allows us to measure the density matrix

Wavefunction: Lundeen Nature, 474, 188 (2011)
Mixed States: Lundeen PRL 108, 070402 (2012), Bamber PRL 112, 070405 
(2014),Thekkadath PRL 117, 120401 (2016), Thekkadath PRL 119, 050405 (2017)
Heisenberg: Thekkadath NJP 20, 113034 (2018)



Uncertainty and Weak Measurement
• The weak measurement POVM Π is a projector, ۧ|𝜋(𝑞) .

➢ Superposition of sharp states in x and p

ൿۧ|𝜋(𝑞) = |𝑥′ + 𝒫(𝑞)𝑒𝑖𝑥′𝑝′ | ۧ𝑝′

GS Thekkadath, F Hufnagel, JS Lundeen, 
New J Phys 20, 113034 (2018)

Measured pointer 
position, q

Predictability 𝒫(𝑞) is our ability to predict whether the particle had x’ given 
outcome q.

Weak measurement 
of ۧ|𝑥′ |′𝑥ۦ

Strong 
measurement 
of ۧ|𝑝′ |′𝑝ۦ

• In the double-slit experiment, predictability 𝒫 and visibility 𝒱 obey an 
uncertainty relation: 

𝒫2 + 𝒱2  ≤ 1

• Weak measurement trades away predictability to reduce disturbance to the 
quantum coherence (i.e. visibility)

E    ¼    ½    ¾    F

q



Compatibility with the Heisenberg Uncertainty Relation

GS Thekkadath, F 
Hufnagel, JS Lundeen, New 
J Phys 20, 113034 (2018)

• Weak measurements reduce disturbance at the expense of certainty.
• Do they trade precision in Δp for imprecision in Δx?
• What does the POVM Π of the measurement look like in phase-space?

p

x
x'

p'

m
o
m

e
n
tu

m

position
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