

Max Planck - University of Ottawa Centre for Extreme and Quantum Photonics

Direct Measurement of the Kirkwood-Dirac distribution

Jeff Lundeen

Lundeen Lab www.photonicquantum.info Department of Physics

Centre for Research in Photonics, Joint NRC-uOttawa Centre for Extreme Photonics

QuiDiQua 2025 Paris

u Ottawa

Direct Measurement Group Members

Direct Measurement Alumni

Corey Stewart

Aabid Patel

Brandon Sutherland

Thomas Bailey

Michael Weil

Raphael Abrahao

Jash

Banker

Yamn Chalich

Matthew Horton

Rebecca Saaltink

Aldo Becerril

Jeff Lundeen

Felix **Davor Curic**

Guillaume Hufnagel Thekkadath

Abdulkarim Hariri

Lambert Giner

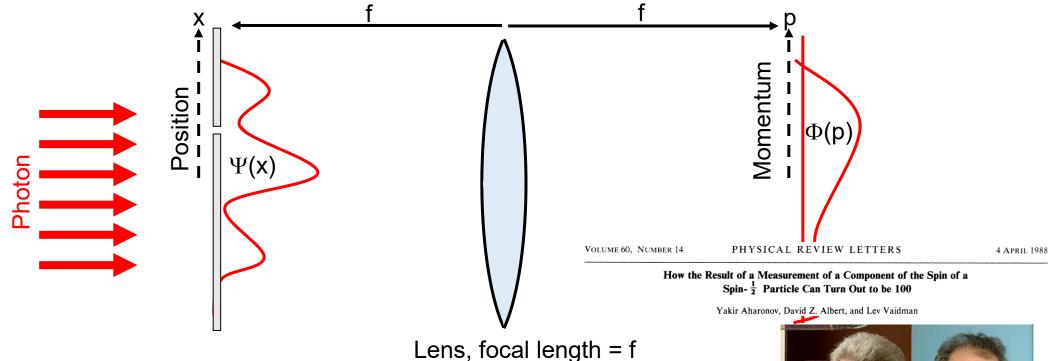
How do we measure a system's state?

A classical particle's state is given by its position x and momentum p

But in quantum physics we have Heisenberg's measurement-disturbance relation:
 Δx Δp ≥ ħ/2

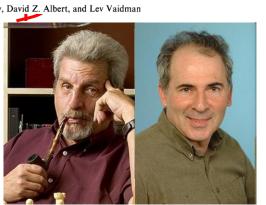
- How can we determine a quantum state?
- This question stumped many great thinkers: Wigner, Fano, Dirac,...

Example of the Heisenberg measurement-disturbance relation



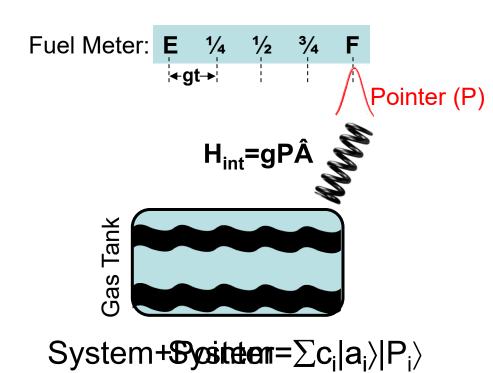
- Measure x precisely and we disturb p so that $\Delta p \rightarrow \infty$
 - > Can not know x and p perfectly at the same time

What if we measure *x* gently?



Good measurements

Strong Measurement

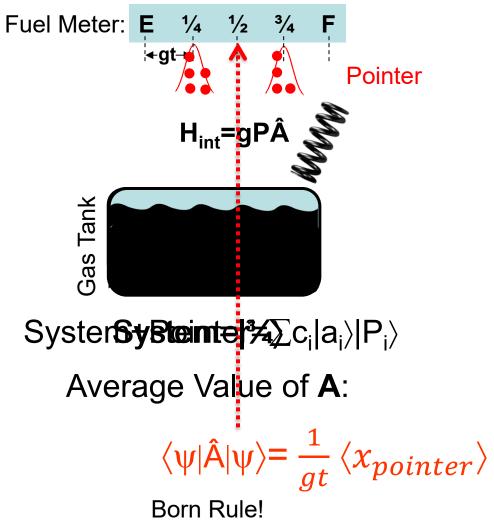


Von Neumann: Model both the measured system and the measurement apparatus as quantum systems.

e.g. The pointer needle on a fuel gauge has a wavefunction and so does the gas tank.

Good measurements

Strong Measurement

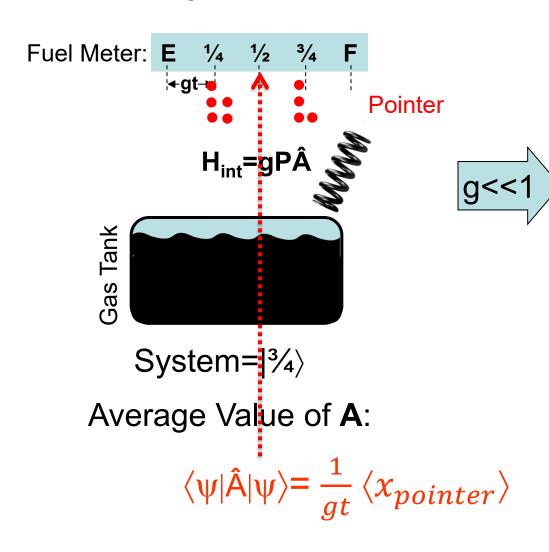


Von Neumann: Model both the measured system and the measurement apparatus as quantum systems.

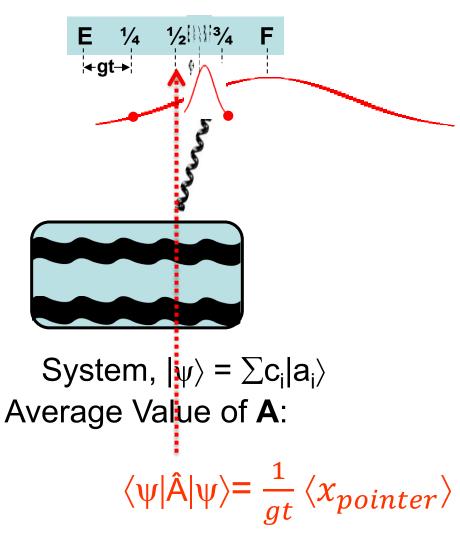
e.g. The pointer needle on a fuel gauge has a wavefunction and so does the gas tank.

Weak Quantum Measurement

Strong Measurement

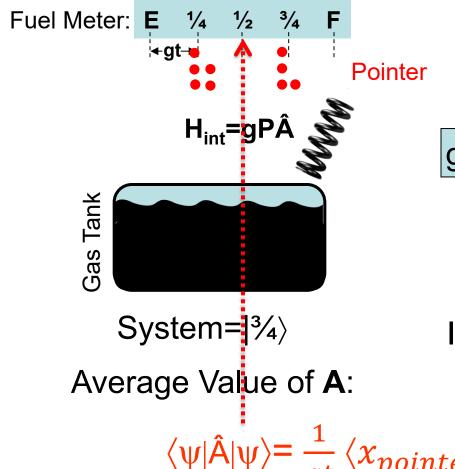


Weak Measurement

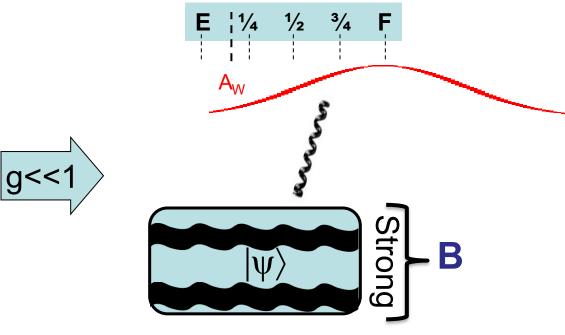


Weak Measurement

Strong Measurement



Weak Measurement



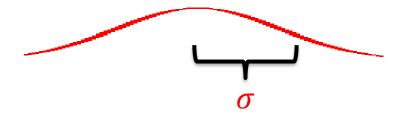
In the cases where result of B is b Average Value of $\mathbf{A} \equiv Weak \ Value$:

$$\langle \psi | \hat{\mathsf{A}} | \psi \rangle = \frac{1}{gt} \langle x_{pointer} \rangle \qquad \mathsf{A}_{\mathsf{W}} = \frac{\langle \mathsf{b} | \mathsf{A} | \psi \rangle}{\langle \mathsf{b} | \psi \rangle}$$
Real part of A_{W} is the position shift of the pointer
$$A_{\mathsf{W}} = \frac{1}{gt} \left(\langle x \rangle + i \frac{2\sigma^2}{\hbar} \langle p \rangle \right)$$
Imaginary part of A_{W} is the momentum shift of the pointer

The weak value and the lowering operator

Average shift of the pointer when B=b

$$A_{W} = \frac{2\sigma}{gt} \left(\frac{1}{2\sigma} \langle x \rangle_{Pointer} + i \frac{\sigma}{\hbar} \langle p \rangle_{Pointer} \right)$$



Lundeen & Resch, Phys. Lett. A 334 (2005) 337–344

Harmonic oscillator lowering operator

$$a = \frac{1}{2\sigma} \langle x \rangle + i \frac{\sigma}{\hbar} \langle p \rangle$$

The weak value is proportional to the lowering operator a:

$$A_W = \frac{2\sigma}{gt} \langle a \rangle_{Pointer}$$

Mystery: why is the lowering operator appearing?

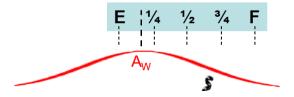
Example: Gently measure X so that you don't disturb P

• What if we do a weak measurement of X, and then make a strong measurement of **P**?

i.e. $\mathbf{A} = |x\rangle\langle x| = \pi$, Initial state= $|\psi\rangle$, Strong measurement result P = p

Average shift of the pointer:

$$A_{W} = \frac{\langle b|A|\psi\rangle}{\langle b|\psi\rangle}$$



$$\pi_{w} = \frac{\langle p|x\rangle\langle x|\psi\rangle}{\langle p|\psi\rangle}$$

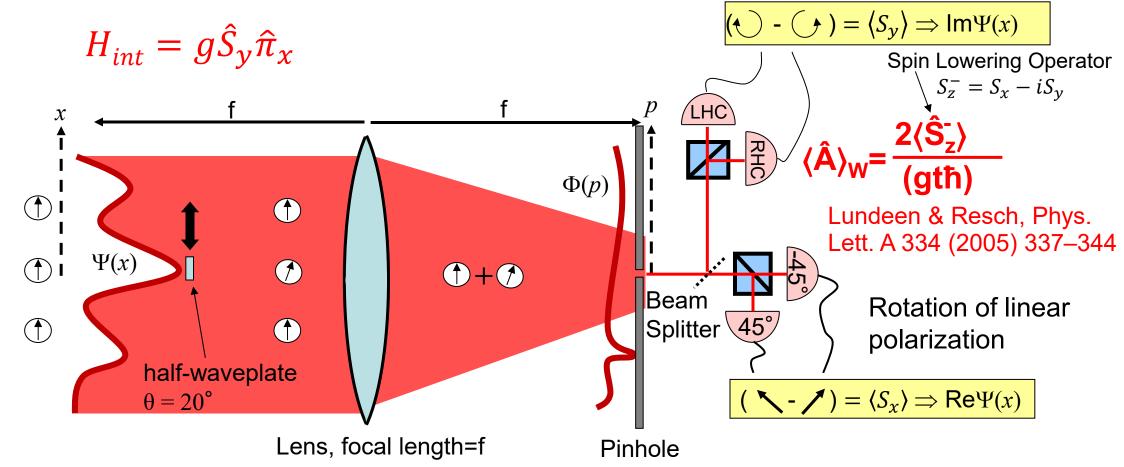
And if
$$p=0$$
, $\pi_{w}=\frac{1/\sqrt{2\pi \cdot \langle x|\psi\rangle}}{\sqrt{\text{Prob}(p=0)}}=\boxed{\mathbf{k}\cdot\psi(x)}$

 The average shift of the pointer (i.e. rotation of the polarization) is proportional to the wavefunction, Lundeen Nature, 474, 188 (2011)

Direct Measurement of the Wavefunction

- Weakly measure $|x\rangle\langle x| = \hat{\pi}_x$ then strongly measure p
- Keep only the photons found with p=0 (post-selection!)

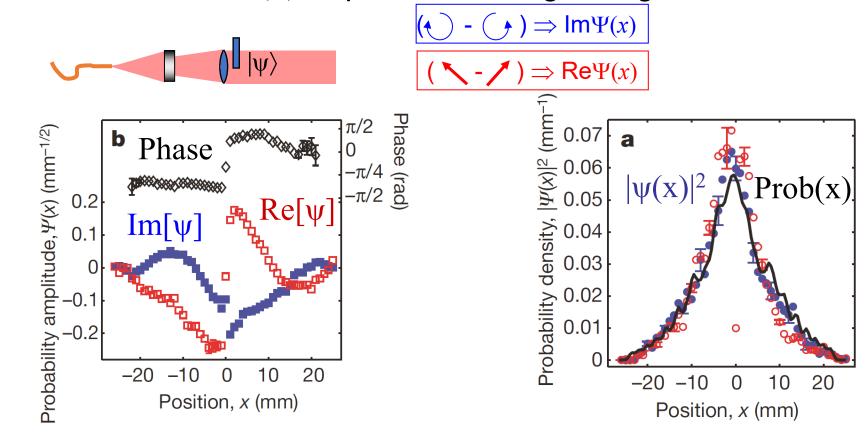
Imbalance in circular polarizations



 The average result of the weak measurement is the real and imaginary components of the wavefunction

Direct Measurement of the Wavefunction

• Demonstrate method with $\Psi(x)$ of photons exiting a single-mode fibre



Lundeen Nature, 474, 188 (2011)

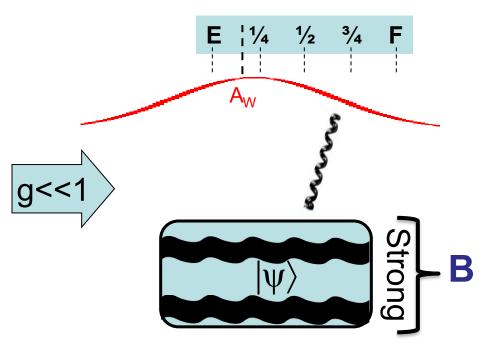
- The two signals directly give $Im[\psi]$ and $Re[\psi]$.
- Direct measurement accurately shows phase and magnitude of $\psi(x)$

Weak Measurement

Strong Measurement

Fuel Meter: **E Pointer** Gas Tank System=3/4> Average Value of **A**:

Weak Measurement

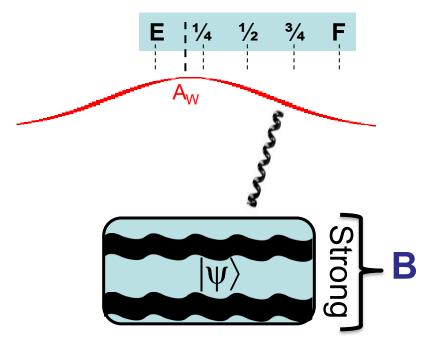


In the cases where result of **B** is **b**Average Value of **A**:

$$A_{W} = \frac{\langle b|A|\psi\rangle}{\langle b|\psi\rangle}$$

Weak Measurement

Weak Measurement

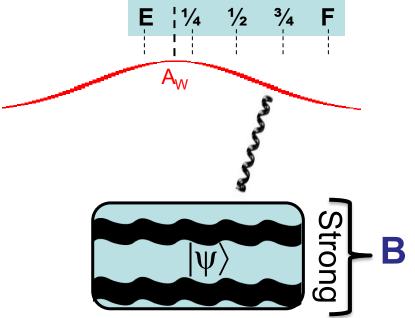


In the cases where result of **B** is **b**Average Value of **A**:

$$A_{W} = \frac{\langle b|A|\psi\rangle}{\langle b|\psi\rangle}$$

Weak Measurement without post-selection

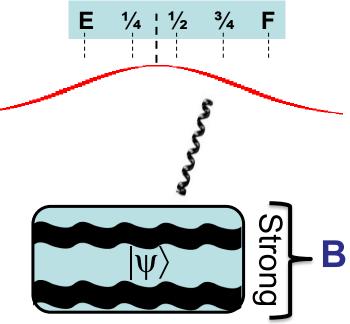
Weak measurement W of A, post-selecting on b



In the cases where result of **B** is **b**Average Value of **A**:

$$A_{W} = \frac{\langle b|A|\psi\rangle}{\langle b|\psi\rangle}$$

Weak Measurement W of A and strong S of B



Average Value of $AB \equiv Weak Average$:

$$\langle A_W B_S \rangle = \langle \psi | AB | \psi \rangle = Tr[AB\rho]$$

- A weak-strong measurement of AB is just the regular quantum expectation value.
- If AB don't commute, $\langle A_W B_S \rangle = Tr[AB\rho]$ can be complex

Weak average and the lowering operator

The weak average is $\langle A_W B_S \rangle = \langle \psi | AB | \psi \rangle = \langle AB \rangle$

The weak average is found by

$$\langle A_W B_S \rangle = \frac{2\sigma}{gt} \langle a_{Pointer} B_{System} \rangle_{Pointer+system}$$

$$Re\langle A_W B_S \rangle \propto \langle x_{Pointer} B_{System} \rangle_{Pointer+system}$$

 $Im\langle A_W B_S \rangle \propto \langle p_{Pointer} B_{System} \rangle_{Pointer+system}$

The weak average is a correlation between the pointer and system

Aside: The weak value and weak average obey Baye's law If A and B are projectors $\pi_{A=a}$ and $\pi_{B=b}$ then the expectation values are probabilities.

 $Prob(b) = \langle \pi_b \rangle$ so.... $Prob(a, b) = \langle \pi_a \pi_b \rangle$, the weak average

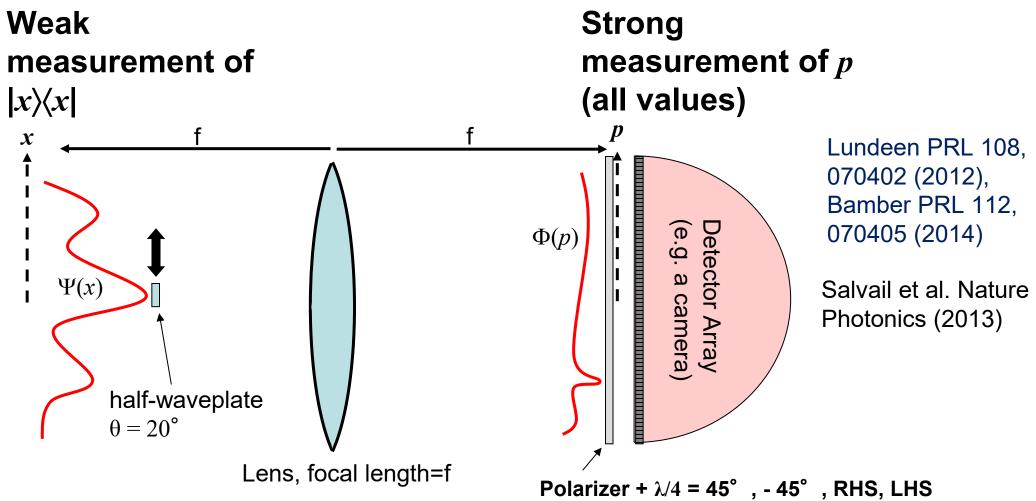
So by Baye's law: $Prob(a|b) = \frac{Prob(a,b)}{Prob(b)} = \frac{\langle \psi | \pi_a \pi_b | \psi \rangle}{\langle \psi | \pi_b | \psi \rangle} = \frac{\langle b | \pi_a | \psi \rangle}{\langle b | \psi \rangle}$, the weak value. Steinberg, A. M., *Phys. Rev. A* 52, 32 (1995).

H. F. Hofmann, New Journal of Physics, 14, 043031 (2012).

If the weak average $\langle \pi_a \pi_b \rangle_W = Prob(a,b)$ then the weak value $\langle \pi_a \rangle_{W,b} = Prob(a|b)$

- The weak value + weak average obey Baye's law despite being complex quantities.

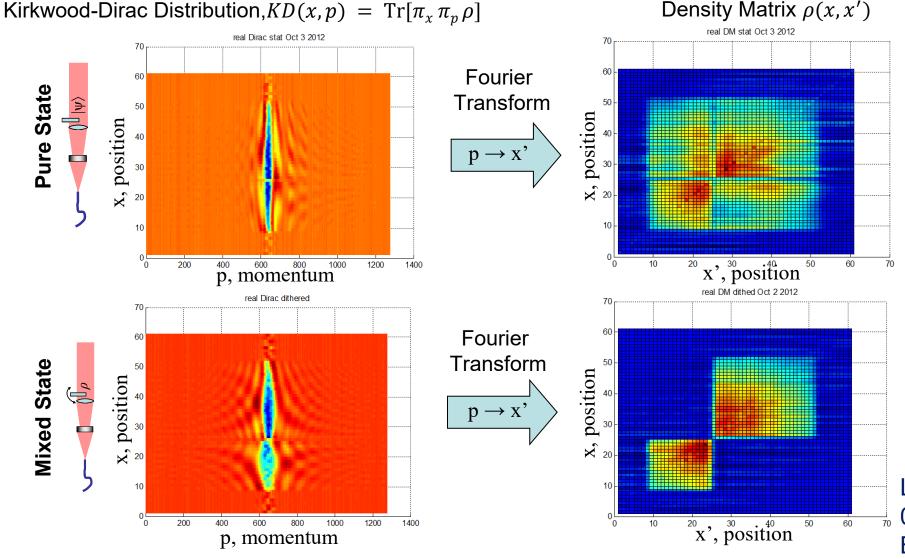
No post-selection: Joint measurement of X and every P



•Joint measurement of $\pi_x = |x\rangle\langle x|$ and $\pi_p = |p\rangle\langle p|$ gives the Kirkwood-Dirac Distribution:

$$KD(x, p) = \langle \pi_x \, \pi_p \rangle = Tr[\pi_x \, \pi_p \, \rho]$$

Direct measurement of the Kirkwood - Dirac Distribution



Simple generalization allows us to completely measure mixed states

Lundeen PRL 108, 070402 (2012), Bamber PRL 112, 070405 (2014),

Direct Measurement of an Entangled Quantum State

PRL **102**, 020404 (2009)

PHYSICAL REVIEW LETTERS

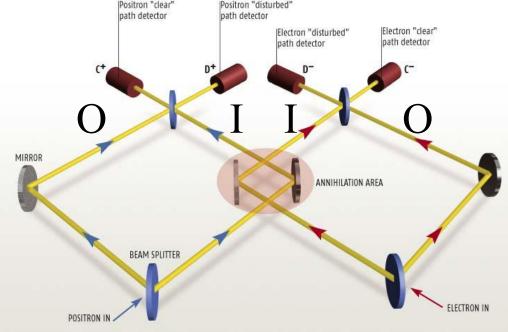
week ending 16 JANUARY 2009

Experimental Joint Weak Measurement on a Photon Pair as a Probe of Hardy's Paradox

J. S. Lundeen and A. M. Steinberg

HARDY'S PARADOX

The positron and electron go down both arms of each of their interferometers. If they meet in the overlapping arms, they should annihilate each other. But, bizarrely, they are still registered as arriving at the D detectors



Theoretical Quantum State:

$$\psi \rangle = 1$$

$$|IO\rangle$$

$$|OI\rangle$$

$$\langle OO \rangle$$

 $|II\rangle$

Two-Particle Weak Measurements

$$|\psi\rangle = 1$$

$$|IO\rangle + 1 |OI\rangle -1$$

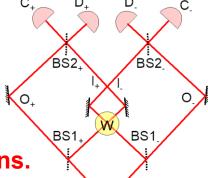
$$|OI\rangle$$

$$|OO\rangle$$
 +

Problem: To directly measure this we need to measure two-particle observables

e.g.,
$$|IO\rangle\langle IO| = \hat{A}_1\hat{A}_2 = |I\rangle\langle I|_1 |O\rangle\langle O|_2$$

For two-particle weak measurements we need a strong optical nonlinearity to implement a Von Neuman measurement interaction (H_{int}=gPÂ₁Â₂).



Solution: Conduct two single-particle weak measurements and study pointer correlations.

$$H_{int} = g\hat{S}_{1y}\hat{A}_1 + g\hat{S}_{2y}\hat{A}_2$$

Two-particle strong measurement with spin pointers:

$$\langle \hat{A}_1 \hat{A}_2 \rangle = \frac{\langle \hat{S}_{1x} \hat{S}_{2x} \rangle}{(gths)^2}$$

Two-particle weak measurement with spin pointers and post-selection

Spin Lowering Operators

$$\langle \hat{A}_1 \hat{A}_2 \rangle_W = \frac{\langle \hat{S}_1 \hat{S}_2 \rangle_{fi}}{(gt\hbar s)^2}$$

Lundeen & Resch, Phys. Lett. A 334 (2005) 337-344 Resch & Steinberg, PRL 92,130402 (2004)

Directly Measuring Entangled States

'e of Weakly measure where the particle pair is in Hardy's Paradox, i.e., in the surface photon pairs that exit a the Dark (D) detectors (post-selection on com-

$$|\psi\rangle = \langle \pi_{IO} \rangle_{W} |IO\rangle + \langle \pi_{OI} \rangle_{W} |OI\rangle + \langle \pi_{OI} \rangle_{W} |OI\rangle$$

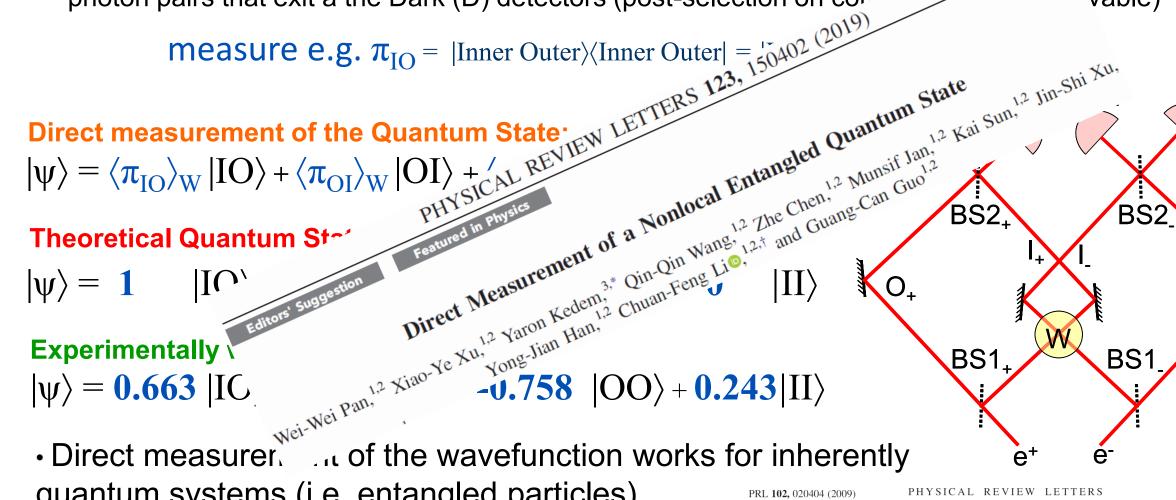
Theoretical Quantum Stat

$$|\psi\rangle = 1 \qquad |IO\rangle$$

Experimentally

$$|\psi\rangle = 0.663$$
 |IC

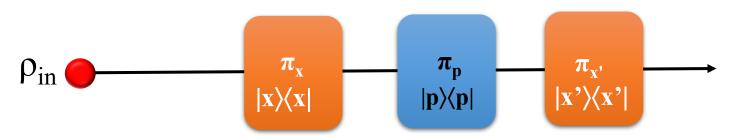
 Direct measurer. quantum systems (i.e. entangled particles).



vable)

Directly Measuring the Density Matrix

Jointly weakly measure X then P then X again



Theory: Lundeen & Bamber PRL 108, 070402 (2012).

Average result is $Tr[\pi_x \pi_p \pi_x, \rho_{in}] = \rho_{in}(x,x')$

How can we measure this?

Step 1: $H_{int} = gP_1\pi_x$ using pointer 1

Step 2: $H_{int} = gP_2\pi_p$ using pointer 2

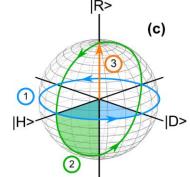
Step 3: strongly measure π_{x} .

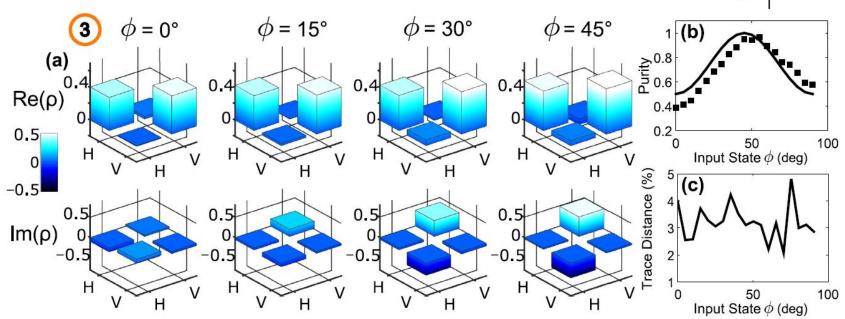
Step 4: $\langle a_1 a_2 \pi_{x'} \rangle_{system+pointer} \propto Tr[\pi_x \pi_p \pi_{x'} \rho_{in}]$

• We can know any chosen element $\rho_{in}(x,x')$ of the density matrix e.g. a particular coherence, entanglement witnesses, etc.

Thekkadath PRL 117, 120401 (2016)

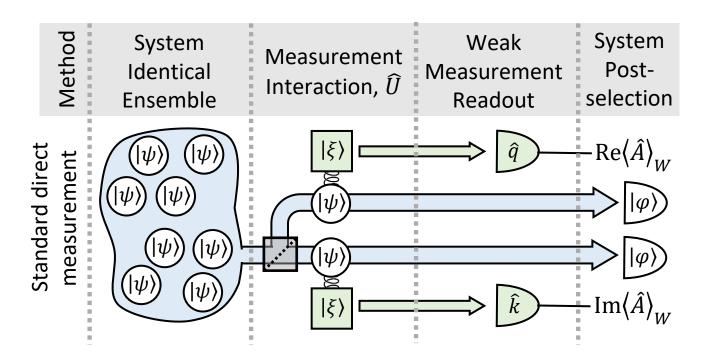
We measured the density matrix of a polarized photon Testing states along path 3 in the Poincaré sphere





- The measured and expected purities match
- The trace distance between the expected and measured density matrices is less than 0.05

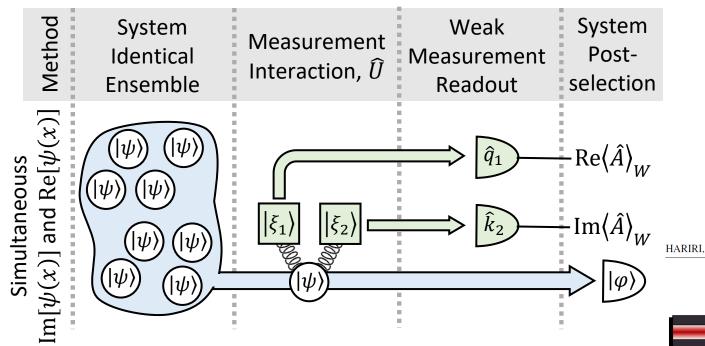
Even more direct?



- We switch back and forth between measuring $Im[\psi(x)]$ and $Re[\psi(x)]$
- Can we measure both in each trial?

Even more direct: Simultaneous readout

- Solution: Weak measurements do not disturb each other
 - \therefore Weakly measure twice in row, once for $\mathrm{Im}[\psi(x)]$ and once $\mathrm{Re}[\psi(x)]$
- Need two readouts (i.e. 'pointers') or a two-dimensional readout.



PHYSICAL REVIEW A 100, 032119 (2019)

Experimental simultaneous readout of the real and imaginary parts of the weak value

A. Hariri, D. Curic, L. Giner, and J. S. Lundeen 60

HARIRI, CURIC, GINER, AND LUNDEEN

PHYSICAL REVIEW A 100, 032119 (2019)

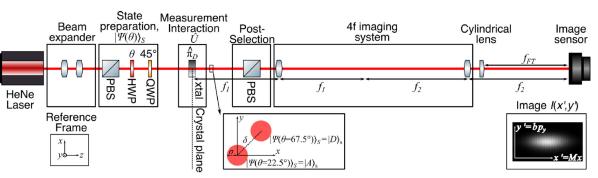
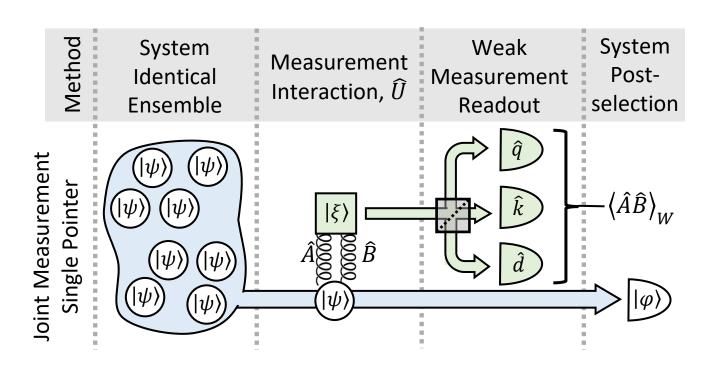


FIG. 2. Experimental setup for simultaneous readout of the real and imaginary parts of the weak value. This setup implements method C in

Better Joint Measurements of AB

- Needed one readout system ('pointer') per observable
- Here, only need a single readout system for multiple projectors, $|a\rangle\langle a|, |b\rangle\langle b|$
- But, need to measure more readout system observables



PAPERS

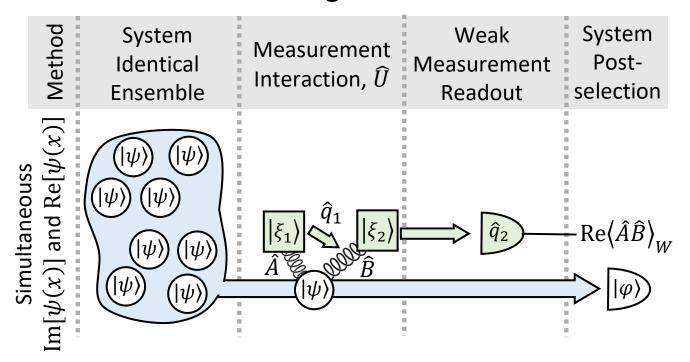
Quantum 5, 599 (2021).

Theory and experiment for resource-efficient joint weak-measurement

Aldo C. Martinez-Becerril¹, Gabriel Bussières¹, Davor Curic², Lambert Giner^{1,3}, Raphael A. Abrahao^{1,4}, and Jeff S. Lundeen^{1,4}

Even more direct: Simultaneous readout

- Want simple (i.e. 'direct') readout of a single pointer system
- Solution: Measure B scaled by the outcome of the measurement of A
- Condition the strength of the measurement of B on the outcome of A.



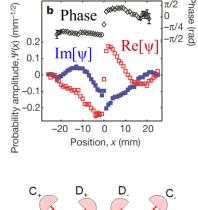
Theory: Lundeen, Bamber, PRL 108, 070402 (2012) Previous talk by Michael Weil

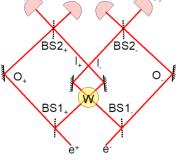
Conclusions

1. Measurements of complementary variables by weak measurement give the quantum state of a system, wave-function or Kirkwood-Dirac

 Generalization of two-particle correlation measurements to weak von-Neumann interactions allows us to measure entangled states

3. Generalization of three-time correlation measurements to weak von Neumann interactions allows us to measure the density matrix



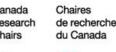


Wavefunction: Lundeen Nature, 474, 188 (2011)

Mixed States: Lundeen PRL 108, 070402 (2012), Bamber PRL 112, 070405

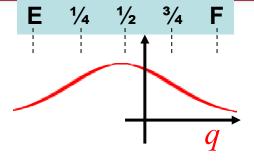
(2014), Thekkadath PRL 117, 120401 (2016), Thekkadath PRL 119, 050405 (2017)

Heisenberg: Thekkadath NJP 20, 113034 (2018)



Uncertainty and Weak Measurement

- The weak measurement POVM Π is a projector, $|\pi(q)\rangle$.
 - > Superposition of sharp states in x and p



Measured pointer position,
$$q$$
 Weak measurement of $|x'\rangle\langle x'|$ measurement $|\pi(q)\rangle = |x'\rangle + \mathcal{P}(q)e^{ix'p'}$ $|p'\rangle$

Predictability $\mathcal{P}(q)$ is our ability to predict whether the particle had x' given outcome q.

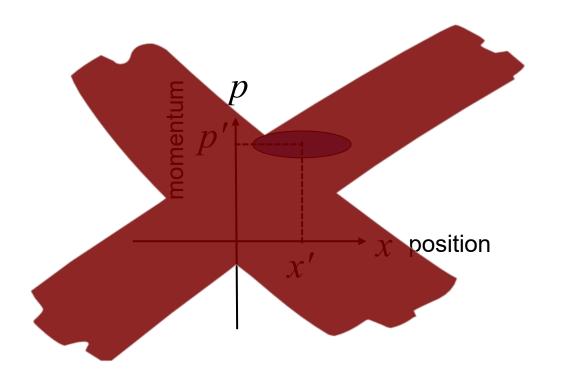
In the double-slit experiment, predictability $\mathcal P$ and visibility $\mathcal V$ obey an uncertainty relation:

$$\mathcal{P}^2 + \mathcal{V}^2 \leq 1$$

 Weak measurement trades away predictability to reduce disturbance to the GS Thekkadath, F Hufnagel, JS Lundeen, quantum coherence (i.e. visibility) New J Phys 20, 113034 (2018)

Compatibility with the Heisenberg Uncertainty Relation

- Weak measurements reduce disturbance at the expense of certainty.
- Do they trade precision in Δp for imprecision in Δx ?
- What does the POVM Π of the measurement look like in phase-space?



GS Thekkadath, F Hufnagel, JS Lundeen, New J Phys 20, 113034 (2018)