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Brief history and motivation:

➢Wigner formalism, i.e., phase space formalism

E. Wigner

Awarded Nobel Prize in 1963.

2                                                                                                    𝑄𝑢𝑖𝐷𝑖𝑄𝑢𝑎3 2025

➢Discrete Wigner function formalism, i.e., Gibbons et. al. formalism 

W.-K. Wootters



What are negative quantum states?

Are a normalized set of real numbers distributed over a two-dimensional grid of points.

➢ To define discrete Wigner functions we need to choose two 

one-to-one maps:

     (1). Each basis set Bi is associated with each striation Si and

     (2). Each basis vector |𝛼𝑖 ,𝑗 ⟩ is associated with a line 𝜆𝑖 ,𝑗. 

In terms of phase point operator 𝑨(𝜶),

                      𝑊𝛼 =
1

𝑑
 (𝑇𝑟 [𝜌 𝑨(𝜶)])

here,  𝑨(𝜶) = σ𝜆𝑖,𝑗∋𝛼 𝑷𝑖 ,𝑗 – 1, and 𝑷𝑖 ,𝑗   = |𝛼𝑖 ,𝑗 ⟩⟨𝛼𝑖 ,𝑗 |. 

In terms of probabilities (𝑝𝑖,𝑗),

          𝑊𝛼 =
1

𝑑
σ𝜆𝑖,𝑗∋𝛼 𝑝𝑖,𝑗  − 1

Negative quantum states are the normalized eigenvector 

corresponding to the negative eigenvalues of 𝑨 𝜶 . The 

state corresponding to the normalized eigenvector of most 

negative eigenvalue of 𝑨(𝜶) is |𝑁𝑆1⟩. Analogously, the 

second and third negative quantum states are represented 

by |𝑁𝑆2⟩  state and 𝑁𝑆3  state, corresponding to the 

normalized eigenvectors of second and third most negative 

eigenvalues of 𝑨(𝜶) , respectively, and so on.

𝑇𝑟(|𝛼𝑖 ,𝑗 ⟩⟨𝛼𝑖 ,𝑗 |𝜌) =  ෍

𝜆𝑖,𝑗 ∋𝛼

𝑊𝛼
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What is their importance?

System

Environment

Open quantum system

➢Noise emerges as an artefact of the system’s interaction with 
its ambient environment.

➢Mathematical formalism for the operation of noisy channels 
on ⍴ is 

     

   here 𝐾𝑖
′𝑠 are the Kraus operators, characterizing the noise.

➢Depending on the noise, system’s dynamics can be 
Markovian (memoryless) or non-Markovian (information 
backflow).

➢We have particularly considered the (non)-Markovian unital, 
(random telegraph noise (RTN)) and non-unital (amplitude 
damping (AD)) noisy channels.

𝜌 𝑡 =  ෍

𝑖

𝐾𝑖 𝑡 𝜌 0 𝐾𝑖
† 𝑡 ,
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Physical Model WM and QMR:

Schematic diagram for protecting quantum correlations of negative 

quantum states and Bell state using weak measurement (𝑴𝑊𝑀) and 

quantum measurement reversal (𝑴𝑄𝑀𝑅).

➢ Alice first performs weak measurement (𝑀𝑊𝑀(𝑝1, 𝑝2)), on the negative 

quantum states before distribution to Bob and Charlie via non-Markovian 

noisy quantum channels. 

➢ Bob and Charlie perform quantum measurement reversal (𝑀𝑄𝑀𝑅(𝑞1,

𝑞2))), on receiving the qubits. 

               𝑀𝑄𝑀𝑅 𝑞1, 𝑞2 = 1 − 𝑞1 0

0 1
⊗ 1 − 𝑞2 0

0 1

➢ The resulting state 𝜌𝑓(𝑡), can be made maximally entangled by choosing 

appropriate (p1, p2) and (q1, q2). Further, the state 𝜌𝑓(𝑡) can also be used 

for quantum teleportation (QT) between Bob and Charlie.

 𝜌𝑓 𝑡 =
𝑀𝑄𝑀𝑅 σ𝑖=0

1 σ𝑗=0
1 𝐾𝑖𝑗 𝑀𝑊𝑀 𝜌 0 𝑀𝑊𝑀

† 𝐾𝑖𝑗
†

𝑀𝑄𝑀𝑅
†

𝑃𝑠𝑢𝑐𝑐 ,

     here, 𝐾𝑖𝑗 =  𝐾𝑖  ۪ 𝐾𝑗  are the Kraus operators of the non-Markovian 

     noise and, 

 𝑃𝑠𝑢𝑐𝑐 = 𝑇𝑟 𝑀𝑄𝑀𝑅 σ𝑖=0
1 σ𝑗=0

1 𝐾𝑖𝑗 𝑀𝑊𝑀 𝜌 0 𝑀𝑊𝑀
† 𝐾𝑖𝑗

† 𝑀𝑄𝑀𝑅
†

.

𝑀𝑊𝑀 𝑝1, 𝑝2 =
1 0

0 1 − 𝑝1
⊗

1 0

0 1 − 𝑝2
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Results: Quantum correlations and UQT
              requirements

TABLE I. Comparison of the quantum correlations, maximal fidelity, and fidelity deviation variations of 

two-qubit |𝑁𝑆1⟩(𝑝 = 0.17, 𝑞 = 0.54), |𝑁𝑆2⟩(𝑝 = 0.05, 𝑞 = 0.74), |𝑁𝑆3⟩ (𝑝 = 0.05 𝑞 = 0.05), and the 

Bell |𝜙+⟩ state (𝑝 = 0.01, 𝑞 = 0.01) under the non-Markovian AD channel (t > 0).

Variation of success probability of the 𝑁𝑆1, 

𝑁𝑆2 , 𝑁𝑆3 and Bell state under non-

Markovian AD channel with WM strength 

(𝑝),  and QMR strength (𝑞) at time 𝑡 = 10. 

Quantum correlations 

and UQT requirements

Without WM and QMR With WM and QMR

Concurrence |𝑁𝑆3⟩ > |𝜙+⟩ > |𝑁𝑆1⟩ > |𝑁𝑆2⟩ |𝑁𝑆2⟩ > |𝑁𝑆1⟩ > |𝑁𝑆3⟩ > |𝜙+⟩

Discord |𝑁𝑆3⟩ = |𝜙+⟩ > |𝑁𝑆1⟩ > |𝑁𝑆2⟩ |𝑁𝑆2⟩ > |𝑁𝑆1⟩ ≈ |𝜙+⟩ > |𝑁𝑆3⟩

Two (three)-

measurement steering

|𝜙+⟩ > |𝑁𝑆3⟩ > |𝑁𝑆1⟩ > |𝑁𝑆2⟩ |𝑁𝑆2⟩ > |𝑁𝑆1⟩ > |𝜙+⟩ > |𝑁𝑆3⟩

Maximal Fidelity |𝜙+⟩ > |𝑁𝑆3⟩ > |𝑁𝑆1⟩ > |𝑁𝑆2⟩ |𝑁𝑆2⟩ > |𝑁𝑆1⟩ > |𝜙+⟩ > |𝑁𝑆3⟩

Fidelity deviation |𝑁𝑆3⟩ < |𝜙+⟩ < |𝑁𝑆1⟩ < |𝑁𝑆2⟩ |𝑁𝑆2⟩ ≈ |𝑁𝑆1⟩ < |𝑁𝑆3⟩ < |𝜙+⟩
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Results: Quantum correlations and UQT
              requirements

TABLE II. Comparison of the quantum correlations, maximal fidelity, and fidelity deviation variations of two-

qubit |𝑁𝑆1⟩ (𝑝 = 0.17, 𝑞 = 0.54), |𝑁𝑆2⟩ (𝑝 = 0.05, 𝑞 = 0.74), |𝑁𝑆3⟩ (𝑝 = 0.05 𝑞 = 0.05), and the Bell 𝜙+  

state (𝑝 = 0.01, 𝑞 = 0.01) under the non-Markovian RTN channel (t > 0).

Variation of success probability of the 𝑁𝑆1, 

𝑁𝑆2, 𝑁𝑆3 and Bell state under non-Markovian 

RTN channel for WM strength (𝑝),  and QMR 

strength (𝑞) at time 𝑡 = 10. 

Quantum correlations 

and UQT requirements

Without WM and QMR With WM and QMR

Concurrence |𝑁𝑆3⟩ ≈ |𝜙+⟩ > |𝑁𝑆1⟩ > |𝑁𝑆2⟩ |𝑁𝑆2⟩ ≈ |𝑁𝑆3⟩ ≈ |𝜙+⟩ > |𝑁𝑆1⟩

Discord |𝑁𝑆3⟩ > |𝜙+⟩ > |𝑁𝑆1⟩ > |𝑁𝑆2⟩ |𝑁𝑆2⟩ > |𝑁𝑆3⟩ > |𝜙+⟩ > |𝑁𝑆1⟩

Two (three)-

measurement steering

|𝜙+⟩ > |𝑁𝑆3⟩ > |𝑁𝑆1⟩  > |𝑁𝑆2⟩ |𝜙+⟩ > |𝑁𝑆2⟩ ≈ |𝑁𝑆3⟩ > |𝑁𝑆1⟩

Maximal Fidelity |𝜙+⟩ > |𝑁𝑆3⟩ > |𝑁𝑆1⟩ > |𝑁𝑆2⟩ |𝜙+⟩ > |𝑁𝑆2⟩ ≈ |𝑁𝑆3⟩ > |𝑁𝑆1⟩

Fidelity deviation |𝑁𝑆3⟩ < |𝑁𝑆1⟩ < |𝑁𝑆2⟩ < |𝜙+⟩ |𝑁𝑆2⟩ = 0 < |𝑁𝑆3⟩ < |𝑁𝑆1⟩ < |𝜙+⟩
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Results: Maximal CHSH violation and Maximal mean

              quantum Fisher information (QFI)

(ii) : 𝜁 𝑁𝑆𝑖
 under non-Markovian AD

➢ Here 𝜁 𝑁𝑆𝑖
 denotes the ratio of maximal mean QFI for 𝑁𝑆𝑖  state to 

that of the Bell 𝜙+  state.

➢ The |𝑁𝑆1⟩ and |𝑁𝑆2⟩ states maintain a higher maximal mean QFI for 

longer duration in comparison to the Bell |𝜙+⟩ state making them 

better suited for realistic quantum metrology applications under 

noise.

➢ Here 𝜂 𝑁𝑆𝑖
 denotes the ratio of maximal CHSH violation (𝑆𝑚𝑎𝑥) for 

𝑁𝑆𝑖  state to that of the Bell 𝜙+  state with WM and QMR.

➢ With the WM and QMR, the |𝑁𝑆2⟩ state shows more frequent 

revivals above the classical limit 2, which means it retains non-

locality better, while the Bell |𝜙+⟩ state often stays below 2 under 

non-Markovian AD noise. 
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(i) : 𝜂 𝑁𝑆𝑖
 under non-Markovian AD



Gram-Schmidt procedure
Step 1 : Consider any two-qubit negative quantum states, i.e., either of the |𝑁𝑆1⟩, |𝑁𝑆2⟩, |𝑁𝑆3⟩, and |𝑁𝑆3

′ ⟩ as

𝑉1 . Let 𝑉1 = |𝑁𝑆1⟩.
              

Step 2 : To find the other three orthonormal vectors (|𝑉2⟩, |𝑉3⟩, |𝑉4⟩) of  |𝑉1⟩, we take any three linearly     

             independent vectors of |𝑉1⟩. We pick the standard computational basis vectors |𝑒1⟩  =  |00⟩ , 
             |𝑒2⟩  =  |01⟩, |𝑒3⟩  =  |10⟩ as linearly independent vectors of |𝑉1⟩. Considering |𝑂2⟩  =  |𝑒1⟩,
             |𝑂3⟩  =  |𝑒2⟩, |𝑂4⟩  = |𝑒3⟩, the orthonormal vectors |𝑉2⟩, |𝑉3⟩, and |𝑉4⟩ can be calculated using  
             the Gram-Schmidt decomposition as 

𝑉𝐾+1 =
𝑂𝐾+1  −  σ𝑖=1

𝑘 𝑉𝑖 𝑂𝐾+1⟩|𝑉𝑖⟩

𝑂𝐾+1  −  σ𝑖=1
𝑘 𝑉𝑖 𝑂𝐾+1⟩|𝑉𝑖⟩

Step 3: Now, we have four orthonormal vectors |𝑉1⟩, |𝑉2⟩, |𝑉3⟩, and |𝑉4⟩, which can span the two-qubit

      system’s Hilbert space.

Step 4: Finally, the unitary transformation 𝑈 from the computational basis set {|𝑒𝑖⟩} to the

            orthonormal set {|𝑉𝑖⟩} is given by U = σ𝑖=1
4 |𝑉𝑖⟩ ⟨𝑒𝑖|, which takes the vector |00⟩ to the state |𝑁𝑆1⟩. 

How can we realize these states physically?
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Corresponding quantum circuits:
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FIG. 1: Quantum circuits to generate the two-qubit |𝑁𝑆1⟩, |𝑁𝑆2⟩, |𝑁𝑆3⟩, and |𝑁𝑆3′⟩ states from the |00⟩ state using 𝐻, 

𝑅𝑥, 𝑅𝑧, and 𝐶𝑍 gates are shown in subfigures (a), (b), (c), and (d) respectively. Here, 𝑞0 and 𝑞1 represent the qubits in 

the |00⟩ state.



Results: State Tomography
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Fig 2: The city plot for the |𝑁𝑆2⟩ state displays the absolute difference between the components of the 

original |𝑁𝑆2⟩ state and the |𝑁𝑆2⟩ state obtained after performing a mitigated state tomography experiment 

on the real IBM quantum computer 𝑖𝑏𝑚_𝑏𝑟𝑖𝑠𝑏𝑎𝑛𝑒 for 8192 times.

(a) (b)



Negative 
Quantum States

Circuit 
depth​

Circuit​
complexity​

Schmidt​
Rank

Fidelity​

StateTomography MitigatedStateTomography

On simulator On IBM quantum 
computer 

(𝑖𝑏𝑚_𝑏𝑟𝑖𝑠𝑏𝑎𝑛𝑒)

On simulator On IBM quantum 
computer 

(𝑖𝑏𝑚_𝑏𝑟𝑖𝑠𝑏𝑎𝑛𝑒)

|𝑁𝑆1⟩ 13 3 2 0.92 0.87 ± 0.01 0.97 0.99 ± 0.01

|𝑁𝑆2⟩ 13 3 2 0.93 0.88 ± 0.01 0.97 0.98 ± 0.01

|𝑁𝑆3⟩ 13 3 2 0.91 0.89 ± 0.01 0.97 0.98 ± 0.01

|𝑁𝑆3′⟩ 13 3 2 0.91 0.89 ± 0.01 0.96 0.98 ± 0.01

|𝑁𝑆3′′⟩ 4 1 2 0.93 0.91 ± 0.01 0.99 0.99 ± 0.01

Bell state (|𝜙+⟩) 2 2 2 0.93 0.90 ± 0.01 0.99 0.99 ± 0.01

Results: State Tomography
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TABLE I: Comparison of circuit depth, complexity, Schmidt rank, and fidelity after performing state tomography 

and mitigated state tomography on IBM AerSimulator and real quantum computer ibm_brisbane of the negative 

quantum states and the Bell state (| 𝜙+⟩). 



Results: Teleportation using |𝑁𝑆3
′′⟩ state
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FIG. 3: (a) Circuit for implementing quantum teleportation scheme using |𝑁𝑆3
′′⟩ as an entangled resource. The quantum gates in 

the blocks annotated with “if” are applied conditioned on the values of the classical bits corresponding to the measurement 

outcomes. 

(b) Alice transmits the classical information (ab) to Bob through a classical communication channel. Based on the received 

classical bits, Bob performs specific unitary operations on his qubit (denoted as operation on B). Following the application of 

these operations, the resulting final state of Bob’s qubit(Final state of B) corresponds precisely to the unknown quantum 

information originally intended for teleportation.

(a) (b)



Results: Fidelity
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FIG. 4: Variation of (1 −  𝐹) for |𝑁𝑆1⟩, |𝑁𝑆2⟩, |𝑁𝑆3⟩, and 

| 𝜙+⟩ Bell state with depolarizing error probability 𝑝 (a) 

without any error correction and (b) after implementing 

Shor’s error correction.

FIG. 5: Variation of fidelity of |𝑁𝑆1⟩, |𝑁𝑆2⟩, |𝑁𝑆3⟩, and 

| 𝜙+⟩ Bell state with time (a) under non-Markovian RTN 

for 𝑏 =  0.05 and 𝛾𝑅𝑇𝑁  =  0.001, (b) under non-

Markovian AD for 𝑔 =  0.01 and 𝛾𝐴𝐷  =  5.



Conclusion:
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➢ This study introduces innovative methods for generating stable entangled two-qubit negative 

quantum states, supported by detailed quantum circuit designs for practical implementations.

➢ We demonstrated high-fidelity results for these states in simulated environments and on real 

quantum hardware through quantum state tomography and mitigation techniques.

➢ The high fidelity of these states, even under non-Markovian noise, underscores their utility in 

quantum teleportation and other applications requiring robust entanglement.

➢ Extending these methodologies to multi-qubit systems holds promise for creating durable 

quantum memories, essential for long-term quantum information storage and processing.

➢ J. Lalita and S. Banerjee, “A two-qubit collision model: non-Markovianity and non-classicality.” 

(https://arxiv.org/abs/2506.23818)

➢ J. Lalita and S. Banerjee, “Interrelation of Non-Classicality, Entropy, Irreversibility and Work extraction in Open 

Quantum Systems.” (https://arxiv.org/abs/2510.15140)
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Thank you .…

jai.1@iitj.ac.in
         



• For a system defined in a Hilbert space of power of prime 

dimension d, the discrete phase space is an array of d × d 

points.

• The horizontal and the vertical axes of the discrete phase space 

are associated with two non-commuting observables.

• Points in the discrete phase space are labeled by the elements 

of the Galois field 𝐹𝑑 .

• A “line” is a set of d points in discrete phase space.

• For fixed values of a and b when c is varied over Fd in the 

equation aq + bp = c, a set of d parallel lines known as a 

striation is generated.

Discrete phase space

(a)                                     (b)  

(a) Labeling the points of 4 × 4 phase space by 

a finite field.

(b) Labeling the lines of the discrete phase 

space with pure states.

Ingredients required to define a class of discrete 
Wigner functions:
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➢For prime power dimensions, there are (d + 1) 

striations in the discrete phase space, and (d + 1) 

Mutually unbiased bases (MUB’s).

➢Each striation contains d lines analogously each 

MUB contains d basis vectors.

Mutually Unbiased Bases (MUB’s)
Two different orthonormal bases B1 and B2 :

B1 = {|𝛼1,1 ⟩, 𝛼1,2 , ………., |𝛼1,𝑑 ⟩}, | ⟨𝛼1,𝑖  |𝛼1,𝑗 ⟩ |
2 = 𝛿𝑖 ,𝑗,

B2 = {|𝛼2,1 ⟩, 𝛼2,2 , ………., |𝛼2,𝑑 ⟩}, | ⟨𝛼2,𝑖  |𝛼2,𝑗 ⟩ |
2 = 𝛿𝑖 ,𝑗,

are said to be mutually unbiased or mutually conjugate if

      

𝛼𝑖 ,𝑗 𝛼𝑘 ,𝑙
2

=
1

𝑑
    if i≠k.

                    

➢ We denote each line by 𝜆𝑖 ,𝑗,  i.e., the j-th line of 

the i-th striation and |𝛼𝑖 ,𝑗 ⟩ is the j-th vector of 

the i-th MUB.

Ingredients required to define a class of discrete 
Wigner functions:
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(a)

(b)
(a) Labeling of the points 

of 2 × 2 phase  space by a 

finite field 𝐹2.

(b) Labeling of the points 

of 2 × 2 phase space by 

discrete Wigner function 

elements.

Lines and striations of the 

2 × 2 phase space

The MUBs associated with lines of the 2 × 2 discrete phase 

space of single-qubit systems.

W1,1 + W2,1 = 𝑝1,1 ,  (1)

W1,2 + W2,2 = 𝑝1,2 , (2)

W2,1 + W2,2 = 𝑝2,1 ,  (3)

W1,1 + W1,2 = 𝑝2,2 , (4)

W1,1 + W2,2 = 𝑝3,1 , (5)

       W1,2 + W2,1 = 𝑝3,2 .            (6)

W1,1 = ½(𝑝1,1 + 𝑝2,2 + 𝑝3,1 − 1),

W1,2 = ½(𝑝1,2 + 𝑝2,2 + 𝑝3,2 − 1),

W2,1 = ½(𝑝1,1 + 𝑝2,1 + 𝑝3,2 − 1),

W2,2 = ½(𝑝1,2 + 𝑝2,1 + 𝑝3,1 − 1).

DWFs: Single-qubit systems

Striation MUBs associated with 

striation

1 0
1

,
1
0

2 1

2

1
1

,
1

2

1
−1

3 1

2

1
𝑖

,
1

2

1
−𝑖
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Noise Kraus operators Noise function

(non)-Markovian AD 𝐾0
𝐴𝐷 =

1 0

0 1 − 𝜆(𝑡)

𝐾1
𝐴𝐷 = 0 𝜆(𝑡)

0 0

𝜆 𝑡 = 1 −  𝑒−𝑔𝑡
𝑔

𝑙
 sinh

𝑙𝑡

2
+  cosh

𝑙𝑡

2

2

𝑙 = 𝑔2  − 2𝛾𝑔

(non)-Markovian RTN
𝐾0

𝑅𝑇𝑁 =
1 + Λ(𝑡)

2
I2

𝐾1
𝑅𝑇𝑁 =

1 − Λ(𝑡)

2
𝜎𝑧

Λ 𝑡 =  𝑒−𝛾𝑡 cos 𝜁 𝛾𝑡 +
sin 𝜁 𝛾𝑡

𝜁

𝜁 =
2𝑏

𝛾

2

− 1

Noisy quantum channels:
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Results: discrete Wigner functions
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➢ It is highest for odd prime dimension, i.e., qutrit 𝑁𝑆1 

state compared to qubit and two-qubit 𝑁𝑆1 state. 

➢ Under the influence of (non)-Markovian AD noise, the 

two-qubit 𝑁𝑆1 state sustains for a longer duration than 

the single qubit and qutrit 𝑁𝑆1 state. 

➢ Under non-Markovian RTN, all the cases , i.e., qubit, 

qutrit, two-qubit, 𝑁𝑆1 state show expected oscillatory 

behavior, with the peaks and dips of qubit and two-qubit 

in synchronization, with an alternate pattern with the 

qutrit.

n
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n
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n
o
n
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k
o
v
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n
 R

T
N

Results: discrete Wigner negativity
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Results: Mana

➢ Initially, the 𝑁𝑆1 state has a higher value of mana than 

the 𝑁𝑆2  state. However, it dies off very quickly in 

comparison to the 𝑁𝑆2  state. Hence, the 𝑁𝑆2  state 

persists longer and has a finite mana value in presence of 

non-Markovian AD noise. 

➢ Under the non-Markovian RTN, mana for both the 

negative quantum states of qutrit show expected 

oscillatory behavior which is persistent for much longer 

than the non-Markovian AD
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Results: Coherence

➢ Two-qubit negative quantum states have 

quantum coherence greater than the Bell state. 

Also among the negative quantum states the 

𝑁𝑆3 state dominates all others at 𝑡 = 0.

➢ All the states display anticipated decaying 

oscillatory behavior under the non-Markovian 

AD and RTN channel.

➢ For long duration under non-Markovian AD 

the 𝑁𝑆1 and 𝑁𝑆2 states coherence is higher 

then the 𝑁𝑆3 and Bell states.

➢ The 𝑁𝑆3 state’s coherence is higher than all 

other considered states under non-Markovian 

RTN channel.

(a) : non-Markovian AD

(b) : non-Markovian RTN
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Results: Concurrence

➢ For a longer duration, the |𝑁𝑆3⟩ state dominates the Bell state and 

other two-qubit negative quantum states.

➢ With WM and QMR, the two-qubit negative quantum states 

dominate the Bell state in terms of preserving their entanglement 

under non-Markovian AD noise for a longer duration.

(i)  non-Markovian AD

(ii)  non-Markovian RTN

➢ Under non-Markovian RTN channel the |𝑁𝑆3⟩ state shows 

entanglement variations almost equal to the Bell state, and both 

have the highest entanglement over time.

➢ The |𝑁𝑆2⟩ state exhibits entanglement comparable to that of the 

Bell state and |𝑁𝑆3⟩ state over time when WM and QMR are 

employed.
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➢ Just like the Bell state, all the considered two-qubit negative 

quantum states have maximal fidelity always greater than 2/3.

➢ The |𝑁𝑆1⟩ and |𝑁𝑆2⟩ state’s fidelity leads the Bell state with 

WM and QMR.

(ii)  non-Markovian RTN

(i)  non-Markovian AD

Results: Maximal fidelity

➢ The decay in maximal fidelity over time of all the considered 

states is gradual compared to the non-Markovian AD noise.

➢ With WM and QMR, the |𝑁𝑆2⟩ state’s maximal fidelity 

variations are comparable to the |𝑁𝑆3⟩ state.
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Results: Discord

(i) : non-Markovian AD

(ii) : non-Markovian RTN

➢ The variation of discord of 𝑁𝑆3 state is similar to the Bell state 

and these states have the highest discord under non-Markovian 

AD noise.

➢ The discord of the 𝑁𝑆1 and 𝑁𝑆2 states can be seen to be 

enhanced by the WM and QMR. In fact, the 𝑁𝑆2 state shows 

more discord over time than all other considered states. 

➢ The 𝑁𝑆3 state discord dominates the Bell state and other 

considered states over time under the non-Markovian RTN 

channel.

➢ With WM and QMR, at t = 0, the 𝑁𝑆2 state shows discord equal to 

the Bell state and 𝑁𝑆3 state. It also dominates all other considered 

states over time.
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Results: Steering

(i) : non-Markovian AD (ii) : non-Markovian RTN
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Results: Fidelity deviation 
(i)  non-Markovian AD

(ii)  non-Markovian RTN

➢ The |𝑁𝑆3⟩ state is relatively better among all considered quantum 

states for universal quantum teleportation (UQT).

➢ The WM and QMR squeeze the non-zero fidelity deviation area of  

|𝑁𝑆1⟩ and |𝑁𝑆2⟩ states in contrast to the |𝑁𝑆3⟩ and Bell states.

➢ All the two-qubit negative quantum states show less fidelity 

deviation than the Bell state.

➢ With the WM and QMR, the |𝑁𝑆2⟩ state shows zero deviation in 

fidelity under the non-Markovian RTN channel, making it an ideal 

state for UQT. 
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