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Brief history and motivation:

» Wigner formalism, i.e., phase space formalism

JUNE I, 1932 PHYSICAL REVIEW VOLUME 40

Awarded Nobel Prize in 1963.

On the Quantum Correction For Thermodynamic Equilibrium

By E. WiGNER
Department of Physics, Princefon University
(Received March 14, 1932)

The probability of a configuration is given in classical theory by the Boltzmann
formula exp [— V/hT| where ¥ is the potential energy of this configuration. For high
temperatures this of course also holds in quantum theory. For lower temperatures,
however, a correction term has to be introduced, which can be developed into a power
series of . The formula is developed for this correction by means of a probability func-
tion and the result discussed.
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What are negative quantum states?

Are a normalized set of real numbers distributed over a two-dimensional grid of points.

» To define discrete Wigner functions we need to choose two
one-to-one maps:
(1). Each basis set B, is associated with each striation S; and
(2). Each basis vector |a;,; ) 1s associated with a line 4;, ;.

Tr(|a;,; Xai,j|p) = z W
A

irj =104

¥

In terms of phase point operator A(«),

O Negative quantum states are the normalized eigenvector
= | corresponding to the negative eigenvalues of A(a). The -
~ | state corresponding to the normalized eigenvector of most
negative eigenvalue of A(a) is |NS;). Analogously, the
second and third negative quantum states are represented here, A(a) = Zli,jaa P;j—1,and Py; = |ag,j Kap; |-
by |NS,) state and |NS3) state, corresponding to the !

normalized eigenvectors of second and third most negative In terms of probabilities (p; j),
eigenvalues of A(a) , respectively, and so on. '

W, = = (Tt [p A(@)])

1
Wa - E (Zﬂi’ja(l pi;j o 1)
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What 1s their importance?

Environment

Open quantum system

» Noise emerges as an artefact of the system’s interaction with
its ambient environment.

» Mathematical formalism for the operation of noisy channels
on p is

p() = ) Ki(p(OKS (©),

here K/ s are the Kraus operators, characterizing the noise.

» Depending on the noise, system’s dynamics can be

Markovian (memoryless) or non-Markovian (information
backflow).

» We have particularly considered the (non)-Markovian unital,
(random telegraph noise (RTN)) and non-unital (amplitude
damping (AD)) noisy channels.
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Physical Model WM and QMR:

» Alice first performs weak measurement (M, (p1, p2)), on the negative
quantum states before distribution to Bob and Charlie via non-Markovian
noisy quantum channels.

1 0 1 0
My (p1, p2) = <0 1 — p1) ® (O 1 - Pz)

> Bob and Charlie perform quantum measurement reversal (Mg (g1,
@ @ q,))), on receiving the qubits.

1 — 0 1 — 0
Monr (44, )=< 41 )@( q2 )
oMRr\q1, 42 0 1 0 1

Mo(a)) Mo\i(,) » The resulting state pr(t), can be made maximally entangled by choosing
; 2 o0 L 2 appropriate (pl, p2) and (ql, q2). Further, the state p¢(t) can also be used
Charlie 0l
for quantum teleportation (QT) between Bob and Charlie.

_ MQMR(Zil=o Z}':o Kij[MWM P(O)MJIM]KLTj)MgMR
,Df(t) = psucc ’

here, K;; = K; ® K; are the Kraus operators of the non-Markovian
noise and,

psucc — TT'[MQMR (Zi1=0 211-=0 K;j [MWM P(O)MJVM] Ki'S')MgMR].

Schematic diagram for protecting quantum correlations of negative
quantum states and Bell state using weak measurement (M ,,,) and
quantum measurement reversal (M gpyg).
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Results: Quantum correlations and UQT
requirements

Quantum correlations Without WM and QMR With WM and QMR
and UQT requirements

Concurrence INS3) > |pT) > |[NS;) > |NS,) |[NS,) > |NS;) > [NS3) > |pT)
Discord INS3) = [¢pT) > [NSy) > |[NSz)  [NSz) > [NSy) = [¢pT) > |NSs) —
Two (three)- |pt) > |NS3) > |[NS;) > |NS,) |[NS,) > |NS;) > [¢pT) > [NS3)

measurement steering

Maximal Fidelity |pt) > |NS3) > |[NS;) > |NS,) INS,) > [NS;) > |pT) > |NS;) "o

Variation of success probability of the NS,
NS, , NS; and Bell state under non-
Markovian AD channel with WM strength
(p), and QMR strength (q) at time t = 10.

Fidelity deviation ~ |[NS3) < |¢*) < [NS;) < [NS,)  [NS,) ~ |NS;) < |[NSs) < |¢*)

TABLE I. Comparison of the quantum correlations, maximal fidelity, and fidelity deviation variations of
two-qubit [NS;)(p = 0.17,q = 0.54), |[NS;)(p = 0.05,q = 0.74), |[NS3) (p = 0.05 g = 0.05), and the
Bell |¢p*) state (p = 0.01,q = 0.01) under the non-Markovian AD channel (t > 0).
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Results: Quantum correlations and UQT
requirements

Quantum correlations Without WM and QMR With WM and QMR
and UQT requirements

Concurrence INS3) = |¢pt) > |NS;) > |NS,) INS,) = |[NS3) = |¢p*) > |NS;)

Discord INS3) > [¢pF) > [NS;) > |NS,)  |NSy) > |NS3) > [¢+) > [NS;)

Two (three)- [¢T) > [NS3) > [NSy) > |NS;)  |¢7) > |NS,) = [NS3) > [NS;)
measurement steering

Maximal Fidelity |p*) > |[NS3) > |[NS;) > |NS,) 1p*) > |NS,) ~ |NS5) > [NS;) ~

Variation of success probability of the NS;,

Fidelity deviation  |NS3) < |NS;) < |NS,) < |[¢1) |NS,) = 0 < |NS3) < |NS;) < |p*) NSz, NSs and Bell state under non-Markovian
RTN channel for WM strength (p), and QMR
strength (q) at time t = 10.

TABLE II. Comparison of the quantum correlations, maximal fidelity, and fidelity deviation variations of two-
qubit [NS;) (p = 0.17,q = 0.54), [NS,) (p = 0.05,q = 0.74), [NS3) (p = 0.05 g = 0.05), and the Bell |¢T)
state (p = 0.01, g = 0.01) under the non-Markovian RTN channel (t > 0).
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Results: Maximal CHSH violation and Maximal mean

quantum Fisher information (QFI)

(1) : Nns;) under non-Markovian AD

» Here n)ys,) denotes the ratio of maximal CHSH violation (Sy,4y) for
N |NS;) state to that of the Bell |¢*) state with WM and QMR.

ws{ b R b AR j‘~;'.

1.4+ | l | l .
S8 i > With the WM and QMR, the |NS,) state shows more frequent

13{ Ij !

b i !
! i - ™ m : : S : . )
= | TR [~ (e revivals above the classical limit 2, which means it retains non-

1.2 ko § herde & i | . .

g iy L0k locality better, while the Bell |¢*) state often stays below 2 under

i ¥yl 2 1y 54 y ’
Wty Boqr La | non-Markovian AD noise.
sl d M M AN N W

0 20 40 60 80 100
(i

> Here {|ys,y denotes the ratio of maximal mean QFI for [NS;) state to
that of the Bell |¢™) state.

» The |NS;) and |NS,) states maintain a higher maximal mean QFI for
longer duration in comparison to the Bell |¢*) state making them
better suited for realistic quantum metrology applications under
noise.

0.8 1

074 3

O i e « B

—— (|nsy)

s ClNSz)
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How can we realize these states physically? X

Gram-Schmidt procedure

Step 1 : Consider any two-qubit negative quantum states, i.e., either of the |[NS;), |[NS,), [NS3), and |[NS3) as
[V1). Let [V1) = [NSy).

Step 2 : To find the other three orthonormal vectors (|V5), |V3), |V4)) of |V;), we take any three linearly

independent vectors of |V;). We pick the standard computational basis vectors |e;) = |00),
le,) = |01), |es) = |10) as linearly independent vectors of |V;). Considering |0,) = |eq),
|03) = |ey), |04) = |es), the orthonormal vectors |V,), |V3), and |V,) can be calculated using

the Gram-Schmidt decomposition as
|0k+1) — Eiza(VilOx+1)IVi)

[10642) = i, (VilOg 1)V

|VK+1> =

Step 3: Now, we have four orthonormal vectors |V;), [V5), [V3), and |V, ), which can span the two-qubit

system’s Hilbert space.
Step 4: Finally, the unitary transformation U from the computational basis set {|e;)} to the

orthonormal set {|V;)} is given by U = Y'#_, |V;) (e;|, which takes the vector |00) to the state |[NS; ).
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Corresponding quantum Circuits:

(a) INS;)
(b) INS,)
(c) INS3)
(d)

FIG. 1: Quantum circuits to generate the two-qubit [NS;), [NS,), INS3), and |[NS3') states from the |00) state using H,
R,, R,, and CZ gates are shown in subfigures (a), (b), (¢), and (d) respectively. Here, gy and g, represent the qubits in
the |00) state.
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Results: State Tomography

(a)

(b)

After mitigated state tomography |pns, — Ons,|

After state tomography |pws, — Ons,|

l

0.07

0.06 & &

005 & 'Q

0.04 | |
o~ ~

003 £ 2
Q Q

0.02
0.01
0.00

00
111) (00|

Fig 2: The city plot for the |NS,) state displays the absolute difference between the components of the
original [NS,) state and the |[NS,) state obtained after performing a mitigated state tomography experiment

on the real IBM quantum computer ibm_brisbane for 8192 times.
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Results: State Tomography

Negative Circuit Circuit Schmidt Fidelity
Quantum States depth complexity Rank StateTomography MitigatedStateTomography
On simulator On IBM quantum On simulator On IBM quantum
computer computer
(ibm_brisbane) (ibm_brisbane)
INS;) 13 3 2 0.92 0.87 £0.01 0.97 0.99 + 0.01
INS5) 13 3 2 0.93 0.88 +£0.01 0.97 0.98 + 0.01
INS3) 13 3 2 0.91 0.89 £ 0.01 0.97 0.98 + 0.01
INS;5") 13 3 2 0.91 0.89 +0.01 0.96 0.98 £ 0.01
INS;"") 4 1 2 0.93 0.91 +0.01 0.99 0.99 £0.01
Bell state (|¢*)) 2 2 2 0.93 0.90 +0.01 0.99 0.99 £ 0.01

TABLE I: Comparison of circuit depth, complexity, Schmidt rank, and fidelity after performing state tomography
and mitigated state tomography on IBM AerSimulator and real quantum computer ibm_brisbane of the negative
quantum states and the Bell state (| ¢™)).
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Results: Teleportation using |[NS3') state

(a)

B . If If

(b)
ab | Operation on B Final State of B
00 SX al0) + B|1)
01 SY al0) + S|1)
10 SI al0) + B|1)
11 SZ al0) + B|1)

FIG. 3: (a) Circuit for implementing quantum teleportation scheme using |NS3') as an entangled resource. The quantum gates in
the blocks annotated with “if” are applied conditioned on the values of the classical bits corresponding to the measurement

outcomes.

(b) Alice transmits the classical information (ab) to Bob through a classical communication channel. Based on the received
classical bits, Bob performs specific unitary operations on his qubit (denoted as operation on B). Following the application of
these operations, the resulting final state of Bob’s qubit(Final state of B) corresponds precisely to the unknown quantum

information originally intended for teleportation.
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Results: Fidelity

(a) Without error correction (b) With error correction
(a) Under non-Markovian RTN (b) Under non-Markovian AD
— |NS) state ’. — |NS,) state 3 1.0 4 1.0 -
0:064 | —. INS,) state ’/(' 0.0301 . INS,) state /, ' ' i .
S ® e . £ _\ I.\. 4 '. .
.05 4 |NS3) state 0.025 |NS3) state :}/ / % | oo i // AN
- Bell |¢ + )state ==+« Bell |¢ + )state 7 0.8 1 ‘. ' ¢ \,\ ifi % \.\ i
* \ i E\\ il B\L S
0.04 - 0.020 - ] o t\W/d B\ i/
\ i 64 w\/id % R
T 0.6 1 / BV BV AWV LG
= 0.031 0.015 - Y i B el £ R
L s I' l' ll " " 'I “ ’,\
= .02 0.010 ' \ S B 8 ¥ % % Y
; ) 0.4 - ! j| —— INS,) state —— |NS,) state [ / v
1 \ “ 1
0.01 - 0.005 A — Ixiﬂ S:a:e 0.24|—= lx?) s§a§e ,.' ,," \
0.2 1 \ / ---- |NS3) state ---- |NS3) state i A/ Vo
0.00 - 0.000 - N R Bell |¢ + ) state a.04 " Bell |¢ + ) state } \\/:' N
0.00 0.02 0.04 006 0.08 0.10 0.00 0.02 0.04 0.06 0.08 0.10 0 20 40 60 80 100 0 20 40 60 80 100
p t

FIG. 5: Variation of fidelity of |[NS;), |[NS,), [NS3), and
| T) Bell state with time (a) under non-Markovian RTN
forb = 0.05 and y*™ = 0.001, (b) under non-
Markovian AD for g = 0.01 and y4? = 5.

FIG. 4: Variation of (1 — F) for |[NS;), |NS5), |[NS3), and
| T) Bell state with depolarizing error probability p (a)
without any error correction and (b) after implementing
Shor’s error correction.
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Conclusion:

» This study introduces innovative methods for generating stable entangled two-qubit negative
quantum states, supported by detailed quantum circuit designs for practical implementations.

» We demonstrated high-fidelity results for these states in simulated environments and on real
quantum hardware through quantum state tomography and mitigation techniques.

» The high fidelity of these states, even under non-Markovian noise, underscores their utility in
quantum teleportation and other applications requiring robust entanglement.

» Extending these methodologies to multi-qubit systems holds promise for creating durable
quantum memories, essential for long-term quantum information storage and processing.

» J. Lalita and S. Banerjee, “4 two-qubit collision model: non-Markovianity and non-classicality.”
(https://arxiv.org/abs/2506.23818)

» J. Lalita and S. Banerjee, “Interrelation of Non-Classicality, Entropy, Irreversibility and Work extraction in Open
Quantum Systems.”” (https://arxiv.org/abs/2510.15140)
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Ingredients required to define a class of discrete
Wigner functions:

Discrete phase space

* For a system defined in a Hilbert space of power of prime
dimension d, the discrete phase space is an array of d % d ey P
points. wol® o o o =lo o 0 o
P P
* The horizontal and the vertical axes of the discrete phase space Ll Ew B = & " 8@
are associated with two non-commuting observables. BN =+ .I I. v l‘l
0 1 w w? t 1 “
 Points in the discrete phase space are labeled by the elements q a
of the Galois field Fj. (a) (b)

* A “line” is a set of d points in discrete phase space. (a) Labeling the points of 4 x 4 phase space by

* For fixed values of @ and » when c is varied over F, in the a finite field. .
: B : (b) Labeling the lines of the discrete phase
equation ag + bp = ¢, a set of d parallel lines known as a ;
. space with pure states.
striation is generated.
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Ingredients required to define a class of discrete

Wigner functions:

> For prime power dimensions, there are (d + 1) Mutual]y Unbiased Bases (MUB’S)

striations in the discrete phase space, and (d + 1) Two different orthonormal bases B, and B, :
Mutually unbiased bases (MUB’s).

_ : . By ={layi) lagz)s - ooeeeen s lana)ts [ag, lag;) P =64,
» Each striation contains d lines analogously each

MUB contains d basis vectors. B,={laz,1 ) la2,2)s coenen.. cNaga )y, [ {ag, lag, ) > =6,

are said to be mutually unbiased or mutually conjugate if

» We denote each line by 4;,;, i.e., the j-th line of
the i-th striation and |a;,; ) is the j-th vector of
the 1-th MUB.

(atij |aed )| = 2 if ik
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DWFs: Single-qubit systems

| 1@,
| J@,
OO o0
o0 OO
| 1@) @) |
o) @O

b
(a) Labelin(g gf the points
of 2 x 2 phase space by a
finite field F,.
(b) Labeling of the points
of 2 x 2 phase space by
discrete Wigner function
elements.

20

Lines and striations of the
2 x 2 phase space

10)

Striation MUBs associated with
striation
! -6
SR O RYE
3 AR

The MUBs associated with lines of the 2 % 2 discrete phase
space of single-qubit systems.
Wit Wy =p11, (1)

Wi 1= %p11+ P22t P31 1),
W1,2 *W,,=DP12, @)

Wi, ="%(p12 + P22 t P32~ 1),
W+ W =p21, €))

W,y =%(p11 T P21 T P32 1),
W1,1 *W,,=D22 €))

Wy, ="(p12 + P21 T P31~ 1).
W1,1 +W,,=D31 5 ©)

WiLotW,,=p3,. ©)
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Noisy quantum channels:

Kraus operators Noise function

- 1 1 0 2
(non)-Markovian AD KAD = [0 — /1(1:)] A =1 — et (% - (lEt) g (%))

Kle — [O \//’l(t)] | = \/gz — 2yg
0 0
(non)-Markovian RTN KRTN _ V1+AQ®) [
o = > 2 o t< sin({ yt))
A(t) = e "t | cos({ yt) + 7
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Results: discrete Wigner functions

»
0.2 1 "\,"\II\I‘II\;'\I‘ I\JI\ NN YAY; \ ’\l IV VAN
7

Q 03 014 Vigiiisissriiion .
< ¥
1p 1 Vo) .
= 0.2 l”H ‘”' ‘|" “l, ‘\" “,' \,' vl v 0.0
< ‘ 1‘( }l ¢ N -0.1
= ord 1 F{IN VI WL -0.2
e e s . ity .
3 = O'S_NV\NVWMMW S ool bl L AR L
= 0 | &) @)
“ 0.4
= o3 jjlhda — 4 H uu
i 0.2 1 1 .|| | “ ' ' ,\ ’ ’. F oA —_ W5 | W W
s o]y A < -
— W12, W3 2, W32, Wy 3, W3, W33 5w
: 0.0 ‘. ’ ‘. -' I \ \I ~0.34 J —— Wy Wy I 4.1 I
0 20 40 60 80 100 . . . : . : 0 20 40 60 80 100
0 20 40 60 80 100
t t t

Qubit Qutrit Two-qubit

Z. T :
o o o
~ K - =~
=~o e~ 0-0 T—— R Ty -~ T—
= 0.1 AN g AN s
(=1 0.3 1 N ’ N —0.1 — Wi wa,
' N 4 \\ —= Wis W33
or= AN pd N — Wila Was
> N - ~ —0.2 4 cee W
0.2 1 0.0 N ~—- T T T T T T
[
=< = = = S S e
S a 0.1 01 3 014 ==X ,'-\\& P N —-2
“ o N~—~7 N7 Nt
N~/ \;i( N4
0.0 P "\
0.0 e\ Il\\E"‘—"“
—0.2 1 \\ / —e— W3 3, Wa,
: —0.1 \ ’ — Woaws,
= -01 — Wi, \ / -
N\ 4 —_— W32, Wa,
c _0.34 ™ W2 W22, W52, Wi 3 Wa 3 Ws s _0.2 S s —_— Wi
—=— W31, W3 r
: —021 . . . . . . . . . . . o 20 40 60 80 100
0 20 40 60 80 100 0 20 40 60 80 100
t t t
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Results: discrete Wigner negativity

T

Qubit
- 0'305_ : vm = Quitrit ]
i 0.257= = = = =-Two-qubit | ) ) ) ) ) )
g 3 0.20 » It is highest for odd prime dimension, i.e., qutrit NS;
% > 0.1 5 L state compared to qubit and two-qubit N§; state.
s 00 BEGNANAA L., . . .
g 0.05- PRV AV » Under the influence of (non)-Markovian AD noise, the
I W LA = L B L I ey RSN S A0 S0 S0t B two-qubit NS; state sustains for a longer duration than

0 20 40 60 80 100 the single qubit and qutrit NS; state.

t

z 030 s Qubit RN | » Under non-Markovian RTN, all the cases , i.e., qubit,
°é 025- % ... ?:Vt:_tqubit . " : qutrit, two-qubit, NS; state show expected oscillatory
2 = 020 % % RN ) e behavior, with the peaks and dips of qubit and two-qubit
>3 . : , | . N . .
2 2 o0is in synchronization, with an alternate pattern with the
‘2“ 010 qutrit.
S 005
= 0.00

0 20 40 60 80 100
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Results: Mana

v . Qutrit. NS, state under NMAD » Initially, the NS; state has a higher value of mana than
0.204 ! — Qutrit- NS, state under NMAD : : : :

- 10 ot NS, state undor NMATN the NS, state. However, it dies off very quickly in
oas{ I 11 "o Quirit- NS, sfate undef NMRIN comparison to the NS, state. Hence, the NS, state
010 o o persists longer and has a finite mana value in presence of

e non-Markovian AD noise.
@ 0.05 1 !
> Al
0.00 1 ’ » Under the non-Markovian RTN, mana for both the
—~0.05 1 }I;‘ ',l | ’,r; negative quantum states of qutrit show expected
‘1 N . . . . .
el y oscillatory behavior which 1s persistent for much longer
o10] )
o | | | | than the non-Markovian AD
0 100 200 300 400 500
t

QuiDiQua?® 2025



Results: Coherence

3.0

2.5 A -

N
o
L

Quantum coherence
= =
o w

o
n

o
o
1

3.0

2.5

N
o
L

Quantum coherence
!—l -
o [§,]

o
n

o
(=]
1

(a) : non-Markovian AD

Bell state

—-— Two-qubit- NS; state
——— Two-qubit- NS; state
------ Two-qubit- NS3 state

0 100 200 300 400 500

(b) : non-Markovian RTN

Bell state
—-— Two-qubit- NS; state
——— Two-qubit- NS, state
z: R Twp-qubit- NS5 state

» Two-qubit negative quantum states have
quantum coherence greater than the Bell state.
Also among the negative quantum states the
NS5 state dominates all others at t = 0.

» All the states display anticipated decaying
oscillatory behavior under the non-Markovian
AD and RTN channel.

» For long duration under non-Markovian AD
the NS; and NS, states coherence is higher
then the NS5 and Bell states.

» The NS; state’s coherence is higher than all

other considered states under non-Markovian
RTN channel.

QuiDiQua® 2025



Results: Concurrence

(1) non-Markovian AD

» For a longer duration, the |[NS3) state dominates the Bell state and

(a) Without WM and QMR (b) With WM and QMR . .
109 4 — nsstare || 20w —T other two-qubit negative quantum states.
‘\ —. NS,state “'\ 7% — . NS,state
0.8 - “ - = NSsstate 0.8 \\ '\ I. ‘\ - = NSsstate
v \ - R Ll » With WM and QMR, the two-qubit negative quantum states
0.6 A 0.6 - . . . .
o dominate the Bell state in terms of preserving their entanglement
— . . .
2 2 ) under non-Markovian AD noise for a longer duration.
[
8 0.2 0.2 -
0.0 A1 0.0 A
6 1I0 2'0 3'0 4I0 SIO 6 1l0 2'0 3I0 4‘0 5'0
t
(i1) non-Markovian RTN
(a) Without WM and QMR (b) With WM and QMR
1.0 = . 1State 1.0 A1 .
\ i e etara \\ 5\ > Under non-Markovian RTN channel the |NS3) state shows
8- i —— NSsstate g . .
a [ 15 arsmel| **1 "\ 72\ entanglement variations almost equal to the Bell state, and both
o . i/ .. | — 1state . .
S 08 | s have the highest entanglement over time.
e — — NS3state g g
5 0.4 1 0.4q|aces Be|3| state
O -
c g .
S o2 021 » The |NS,) state exhibits entanglement comparable to that of the
- -~ Bell state and |NS3) state over time when WM and QMR are
3
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employed.
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Results: Maximal fidelity

Maximal Fidelity
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» Just like the Bell state, all the considered two-qubit negative
quantum states have maximal fidelity always greater than 2/3.

» The |[NS;) and |NS,) state’s fidelity leads the Bell state with
WM and QMR.

» The decay in maximal fidelity over time of all the considered
states 1s gradual compared to the non-Markovian AD noise.

» With WM and QMR, the |NS,) state’s maximal fidelity
variations are comparable to the |NS3) state.
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Results: Discord

(1) : non-Markovian AD

(a) Without WM and QMR (b) With WM and QMR » The variation of discord of NS5 state is similar to the Bell state
Y — Nsstate || 107 § = Neushate and these states have the highest discord under non-Markovian
|1 -« NS,state l‘\ - NS,state .
0.8 “ - = NSjstate 0.8 \t: /\ - = NSjstate AD noise.
\ « Bell state t\_ v -

«+ Bell state

?, " " ! » The discord of the NS; and NS, states can be seen to be
.g e S enhanced by the WM and QMR. In fact, the NS, state shows
021 021 more discord over time than all other considered states.
0.0 1 0.0 1 .
0 10 20 30 40 50 0 10 20 30 40 50
t
(i1) : non-Markovian RTN . _
R — ——— » The NS; state discord dominates the Bell state and other
AN —e| B [ considered states over time under the non-Markovian RTN
oot 70 i | on] . channel.
§ o ” > With WM and QMR, at t = 0, the NS, state shows discord equal to
a the Bell state and NS5 state. It also dominates all other considered
= " states over time.
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Results: Steering

Steering

(1) : non-Markovian AD
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Results: Fidelity deviation

Fidelity deviation

Fidelity deviation
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» The |NS3) state is relatively better among all considered quantum
states for universal quantum teleportation (UQT).

» The WM and QMR squeeze the non-zero fidelity deviation area of
[NS;) and |[NS,) states in contrast to the |NS3) and Bell states.

» All the two-qubit negative quantum states show less fidelity
deviation than the Bell state.

» With the WM and QMR, the |NS,) state shows zero deviation in
fidelity under the non-Markovian RTN channel, making it an ideal
state for UQT.
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