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The big question

What is the essential quantum resource that provides
the computational speedup over classical computation?

We approach this problem through classical simulation:

» If a family of quantum circuits can be efficiently simulated classically, then it
offers no quantum computational advantage
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Motivating example
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Consider a quantum circuit consisting of
1. preparation of a product state |¢1) ® [1h2) ® - -,
2. a sequence of local (single-qudit) unitary gates,

3. a measurement of each qudit in the computational basis.
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Motivating example
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This can be simulated efficiently on a classical computer. Therefore,

entanglement is necessary for quantum computational advantage.
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Stabilizer subtheory

1. Pauli measurements, P = (X, Y, Z)
> For any a = (a,,ax) € Z x Z7,

T, = e/l (R) zoK x> 14
k=1

> Eigenvalues are w®, s € Zy, where w = exp(27i/d)
> T13 is a projector corresponding to measurement T, giving outcome s € Zgy

2. Clifford gates, C¢ = N(P)/U(1)
» For any g € C/,
gT.gl =T,

3. Stabilizer states, S
» Eigenstates of Pauli operators
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Gottesman-Knill theorem?

Theorem
Any quantum circuit consisting of

1. preparation of stabilizer states,
2. Clifford unitary gates,
3. Pauli measurements

can be efficiently simulated classically.

» Quantum computational universality is restored in the circuit model by
supplementing the stabilizer subtheory with non-Clifford gates (e.g. T gates)

!Gottesman. arXiv:9807006 (1998)
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Quantum computation with magic states (QCM)?

|magic) =
|magic) =
|magic) =

> Stabilizer operations alone = efficiently simulable

» Stabilizer operations + magic states = universal

1

Stabilizer operations:
Clifford gates+
Pauli Measurements

[H) = == (10) + ™+ 1))

2

2Bravyi and Kitaev. Phys Rev A (2005)
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Discrete Wigner function3*

i< 72
» Phase space is Z"

v

Displacement operators are Pauli operators (or Heisenberg-Weyl operators)

» Parity operator is a sum of all Pauli operators

Ao = Z T,

VEfo
» Phase space point operators are
A, = T,AT), YueZ¥

» The Wigner function W, : Z%” — R of a state p is

Wy(u) = 5 Tr(pA)

3Gross. Ph.D thesis Imperial College London (2005)
4Veitch, Ferrie, Gross, Emerson. New J Phys (2012)
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Odd-dimensional Wigner function

Phase space points are identified with noncontextual value assignments (NCVAs)
on Pauli observables:

functions v : Z2" — Zg4 satisfying:

w @O T, Ty = w D TV commuting a, b.

Let V be the set of noncontextual assignments on Zg”

For each v € V define a phase space point operator

A = % Z w1 T,
bez2y
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Equivalence of Wigner function negativity and contextuality®

> For n > 2, these definitions are equivalent

Ay=T AT = > T,T,Ti=> w7,

vezrr vezy

> The function v,(-) = —[u, ] is a NCVA on Z2"

» Consistency constraints force all NCVAs on Zf,” to have this form

®Delfosse, Okay, Bermejo-Vega, Browne, Raussendorf. New J Phys 19 123024 (2017)
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Odd-dimensional Wigner function

1. Phase space point operators are

1
AT = — Z wYOT, Wye V.
d bezZ?’

2. {A7 |y € V}is a basis for the space of Hermitian operators on Hilbert space

3. The Wigner function is defined by

2 Z Wy (7)A

yev
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Example Wigner functions®’

p= Z Wp(’V)AW

yeVv

0.30

0.30

0.25 0.25
0.20 0.20
0.15 0.15
0.10 0.10
0.05 0.05
0.00 0.00

(a) Stabilizer state (b) Magic state

Discrete Hudson's theorem: stabilizer states have nonnegative Wigner function

®Gross. J Math Phys (2006)
7Anwar, Campbell, Browne. New J Phys (2012)
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Quasiprobability representations for quantum computation

States

with >° W,(v) =1

p= W,MA

Clifford gates:

gA'gh = A8

Pauli measurements:

MAMS = Z gv.2(7',5)A
y'ey

with gy >0, 3 gy,.a(7,5) =1
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Classical Simulation Algorithm (W > 0)

When W, > 0, it is a probability distribution.

p=

1. Sample phase space points A” according to W,(v),
2. Propagate phase space points through the circuit.

Stabilizer operations:
Clifford gates+
Pauli Measurements

= Output

Return definite values for measurements according to ~.

Update under Clifford gates:

Update under Pauli measurements:
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Bound magic states

» There exist nonstabilizer states with W, > 0

» These are called bound magic states

Wigner negativity is necessary for quantum computational advantage
and this is a strictly stronger criterion than being nonstabilizer
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No-go results for existence of Wigner functions

1. No Wigner function for even-dimensional qudits is Clifford covariant®?

2. No Wigner function for even-dimensional qudits is positivity preserving under
Pauli measurements®?®

3. Memory lower bound %n(n — 1) bits required to simulate contextuality'®
= No qubit Wigner function can have a phase space where the phase point
operators form an operator basis

8Raussendorf, Okay, MZ, Feldmann. Quantum 7, 979 (2023)
Schmid, Du, Selby, Pusey. Phys Rev Lett (2022)
10Karanjai, Wallman, Bartlett. arXiv:1802.07744
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The trouble with qubits'

» For qudits, phase space points are identified
with noncontextual value assignements for
Pauli observables

» For qubits, we have state-independent proofs
of contextuality like Mermin square

» = Noncontextual assignments for multiple
qubits do not exist

' Mermin. Rev Mod Phys (1993)

X1 — Xo — XiXo
I
L — 21 — 1>

| |
X1Zo — 21X — Y1 Y2
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CNC construction for qubits*?
We restrict to subsets 2 C Zf," of Pauli operators satisfying:
> If a,be Qwith T,Tp, = TpT,, thena+beQ
» There exists a noncontextual value assignment for Q

Lo
o
-

Phase space point operators: Wigner function:

AL = 1 w e T, p= Z W(Q,7)Aq
beQ (977)

2Raussendorf, Bermejo-Vega, Tyhurst, Okay, MZ. Phys Rev A (2020)
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CNC construction for qubits

States
p=> Wy (A,
(27)

with Z(Q,’y) WP(QarY) =1

Pauli measurements:

Clifford gates:

LAy + ALy ifacq
AL if ad Q

gALe’ = A5 Y, NEALNS = {
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Examples of CNC operators

CNC operators
> Qisa CNC set
» ~visa NCVA on Q

AL =

% S weT,

beQ

Odd d phase space point operators

For a phase space point u € Z2",
> Q=7%
> Yu(-) = —[u, ]

AV — % Z w B T,
beZ2"

Stabilizer states
For a stabilizer state |o) with stabilizer
group S = {w@T,|lac I},
» Q) =/ is a lagrangian subspace of Zf,"
» risa NCVA on /

1
o) (o] = A7 = - 3w T,

ael
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Multiqubit CNC operators can be classified

For any CNC operator A/,
AL =g(AL® o) (o])s

where

1. g is a Clifford unitary, |o) is a stabilizer state

2. AL =5 Y (-1 T, with (T, Tp} =25, Vabel
be2
Equivalently,

3
Q=J(a 1
k=1

where [ is an isotropic subspace of Z3", [ak,g] = 0 for all g € /, and [a;, a;] # 0.
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We only need maximal CNC sets for qubits

» Suppose Q, Q are CNC sets with Q C Q

» For any NCVA ~ on Q, we can find two NCVAs, ~g, 71, on Q such that

> v(a) =m(a) =v(a) VaeQ
> yi(a)=mn(a)+1 mod2 VaeQ\Q

> Then AL + AL = A

» So for any state
p=> Wy ()AL
(&2,7)

if IW,(2,y) > 0 where Q is nonmaximal, we can substitute %Az—; + %Ag for A
without increasing negativity.
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CNC construction for qudits

» For odd-prime dimensional qudits, the only maximal CNC set is Z%”,
i.e., the set of all Pauli observables

» For multiple qudits, CNC phase space point operators with 2 = Zf," are exactly
the Wigner phase space point operators

> If the previous result holds for qudits too, then CNC construction is equivalent to
the Wigner function
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An explicit counter-example

P For a single qutrit
73 = (x) U (2) U (x + 2) U (x + 22)

» There are 9 linear functions on Z3 (Wigner function phase space points)

» There are 81 NCVAs (CNC phase space points)

» For any single-qutrit CNC pair (€1,71) where 71 is nonlinear, any n-qutrit Clifford
gate g, and any n — l-qutrit stabilizer state |o),

(A% ®lo) (o))" = Ag

is CNC where v cannot be extended to a NCVA on Z3".
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Multiqudit CNC operators can be classified

Theorem
For any number of qudits n of any odd prime dimension d, a set Q C Zg” is closed
under inference if and only if

(i) Q is a subspace of Z2", or

(i) Q has the form
3

Q= J(a 1)

k=1
where | C E is an isotropic subspace, [g,a;] = 0 for all g € |, and [a;, aj] # 0.
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The CNC construction describes quantum computations

States

with Z(Q,’y) WP(QaFY) =1

p=_ W,(Q7)A}
(27)

Clifford gates:

gAg' = AZY

1.0 1.0
0.8 0.8
06 06
04 —> 0.4
02 02

0.0

Pauli measurements:

MSARNS o ATS% oL
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Classical Simulation Algorithm (W > 0)
When W, > 0, it is a probability distribution.

p =

Stabilizer operations:
Clifford gates+
Pauli Measurements

= Output

1. Sample phase space points A}, according to W,(£,~),

2. Propagate phase space points through the circuit.

Return definite values for measurements according to v if a € Q,
return uniformly random outcomes otherwise.

Update under Clifford unitaries:

Update under Pauli measurements:
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Summary

> Wigner function negativity is necessary for quantum computational advantage on
odd-dimensional qudits

> Wigner functions don't exist for qubits
» CNC construction works for any dimension, including qubits
» For odd dimensions, CNC provides a new classical simulation algorithm that can

simulate some quantum computations on Wigner negative states
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