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The big question

What is the essential quantum resource that provides
the computational speedup over classical computation?

We approach this problem through classical simulation:

▶ If a family of quantum circuits can be efficiently simulated classically, then it
offers no quantum computational advantage
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Motivating example

|ψ1⟩ U11 U12 U13 U14

|ψ2⟩ U21 U22 U23 U24

|ψ3⟩ U31 U32 U33 U34

|ψ4⟩ U41 U42 U43 U44

Consider a quantum circuit consisting of

1. preparation of a product state |ψ1⟩ ⊗ |ψ2⟩ ⊗ · · · ,
2. a sequence of local (single-qudit) unitary gates,

3. a measurement of each qudit in the computational basis.
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Motivating example

|ψ1⟩ U11 U12 U13 U14

|ψ2⟩ U21 U22 U23 U24

|ψ3⟩ U31 U32 U33 U34

|ψ4⟩ U41 U42 U43 U44

This can be simulated efficiently on a classical computer. Therefore,

entanglement is necessary for quantum computational advantage.
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Stabilizer subtheory

1. Pauli measurements, P = ⟨X ,Y ,Z ⟩
▶ For any a = (az , ax) ∈ Zn

d × Zn
d ,

Ta := e iϕ(a)
n⊗

k=1

Z az [k]X ax [k]

▶ Eigenvalues are ωs , s ∈ Zd , where ω = exp(2πi/d)
▶ Πs

a is a projector corresponding to measurement Ta giving outcome s ∈ Zd

2. Clifford gates, Cℓ = N (P)/U(1)
▶ For any g ∈ Cℓ,

gTag
† = ωΦg (a)Tg ·a

3. Stabilizer states, S
▶ Eigenstates of Pauli operators
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Gottesman-Knill theorem1

Theorem
Any quantum circuit consisting of

1. preparation of stabilizer states,

2. Clifford unitary gates,

3. Pauli measurements

can be efficiently simulated classically.

▶ Quantum computational universality is restored in the circuit model by
supplementing the stabilizer subtheory with non-Clifford gates (e.g. T gates)

1Gottesman. arXiv:9807006 (1998)
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Quantum computation with magic states (QCM)2

|magic⟩ ⇒
|magic⟩ ⇒
|magic⟩ ⇒

Stabilizer operations:
Clifford gates+

Pauli Measurements

⇒ Output

▶ Stabilizer operations alone ⇒ efficiently simulable

▶ Stabilizer operations + magic states ⇒ universal

|H⟩ = 1√
2

(
|0⟩+ e iπ/4 |1⟩

) |H⟩ • SX T |ψ⟩

|ψ⟩

2Bravyi and Kitaev. Phys Rev A (2005)
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Discrete Wigner function3,4

▶ Phase space is Z2n
d

▶ Displacement operators are Pauli operators (or Heisenberg-Weyl operators)

▶ Parity operator is a sum of all Pauli operators

A0 =
∑
v∈Z2n

d

Tv

▶ Phase space point operators are

Au = TuA0T
†
u , ∀u ∈ Z2n

d

▶ The Wigner function Wρ : Z2n
d → R of a state ρ is

Wρ(u) =
1

dn
Tr(ρAu)

3Gross. Ph.D thesis Imperial College London (2005)
4Veitch, Ferrie, Gross, Emerson. New J Phys (2012)
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Odd-dimensional Wigner function

Phase space points are identified with noncontextual value assignments (NCVAs)
on Pauli observables:

functions γ : Z2n
d → Zd satisfying:

ω−γ(a)−γ(b)TaTb = ω−γ(a+b)Ta+b ∀ commuting a, b.

Let V be the set of noncontextual assignments on Z2n
d

For each γ ∈ V define a phase space point operator

Aγ =
1

dn

∑
b∈Z2n

d

ω−γ(b)Tb
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Equivalence of Wigner function negativity and contextuality5

▶ For n ≥ 2, these definitions are equivalent

Au = TuA0T
†
u =

∑
v∈Z2n

d

TuTvT
†
u =

∑
v∈Z2n

d

ω[u,v ]Tv

▶ The function γu(·) = −[u, ·] is a NCVA on Z2n
d

▶ Consistency constraints force all NCVAs on Z2n
d to have this form

5Delfosse, Okay, Bermejo-Vega, Browne, Raussendorf. New J Phys 19 123024 (2017)
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Odd-dimensional Wigner function

1. Phase space point operators are

Aγ =
1

dn

∑
b∈Z2n

d

ω−γ(b)Tb, ∀γ ∈ V .

2. {Aγ | γ ∈ V } is a basis for the space of Hermitian operators on Hilbert space

3. The Wigner function is defined by

ρ =
∑
γ∈V

Wρ(γ)A
γ
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Example Wigner functions6,7

ρ =
∑
γ∈V

Wρ(γ)A
γ

(a) Stabilizer state (b) Magic state

Discrete Hudson’s theorem: stabilizer states have nonnegative Wigner function

6Gross. J Math Phys (2006)
7Anwar, Campbell, Browne. New J Phys (2012)
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Quasiprobability representations for quantum computation

States

ρ =
∑
γ∈V

Wρ(γ)A
γ

with
∑

γ Wρ(γ) = 1

Clifford gates:

gAγg † = Ag ·γ

0 1 2 3 4 5 0 1 2 3 4 5
0.0
0.2
0.4
0.6
0.8
1.0

=⇒

0 1 2 3 4 5 0 1 2 3 4 5
0.0
0.2
0.4
0.6
0.8
1.0

Pauli measurements:

Πs
aA

γΠs
a =

∑
γ′∈V

qγ,a(γ
′, s)Aγ′

with qγ,a ≥ 0,
∑

qγ,a(γ
′, s) = 1

0 1 2 3 4 5 0 1 2 3 4 5
0.0
0.2
0.4
0.6
0.8
1.0

=⇒

0 1 2 3 4 5 0 1 2 3 4 5
0.0
0.2
0.4
0.6
0.8
1.0
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Classical Simulation Algorithm (W ≥ 0)

When Wρ ≥ 0, it is a probability distribution.

ρ⇒
Stabilizer operations:

Clifford gates+
Pauli Measurements

⇒ Output

1. Sample phase space points Aγ according to Wρ(γ),

2. Propagate phase space points through the circuit.
Return definite values for measurements according to γ.

Update under Clifford gates:

0 1 2 3 4 5 0 1 2 3 4 5
0.0
0.2
0.4
0.6
0.8
1.0

⇒

0 1 2 3 4 5 0 1 2 3 4 5
0.0
0.2
0.4
0.6
0.8
1.0

Update under Pauli measurements:

0 1 2 3 4 5 0 1 2 3 4 5
0.0
0.2
0.4
0.6
0.8
1.0

⇒

0 1 2 3 4 5 0 1 2 3 4 5
0.0
0.2
0.4
0.6
0.8
1.0

14/ 28



Bound magic states

▶ There exist nonstabilizer states with Wρ ≥ 0

▶ These are called bound magic states

Wigner negativity is necessary for quantum computational advantage
and this is a strictly stronger criterion than being nonstabilizer
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No-go results for existence of Wigner functions

1. No Wigner function for even-dimensional qudits is Clifford covariant8,9

2. No Wigner function for even-dimensional qudits is positivity preserving under
Pauli measurements8,9

3. Memory lower bound 1
2n(n − 1) bits required to simulate contextuality10

⇒ No qubit Wigner function can have a phase space where the phase point
operators form an operator basis

8Raussendorf, Okay, MZ, Feldmann. Quantum 7, 979 (2023)
9Schmid, Du, Selby, Pusey. Phys Rev Lett (2022)

10Karanjai, Wallman, Bartlett. arXiv:1802.07744
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The trouble with qubits11

▶ For qudits, phase space points are identified
with noncontextual value assignements for
Pauli observables

▶ For qubits, we have state-independent proofs
of contextuality like Mermin square

▶ ⇒ Noncontextual assignments for multiple
qubits do not exist

X1 X2 X1X2

Z2 Z1 Z1Z2

X1Z2 Z1X2 Y1Y2

11Mermin. Rev Mod Phys (1993)
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CNC construction for qubits12

We restrict to subsets Ω ⊂ Z2n
d of Pauli operators satisfying:

▶ If a, b ∈ Ω with TaTb = TbTa, then a+ b ∈ Ω

▶ There exists a noncontextual value assignment for Ω

XX

XZ

ZZ

ZX

Z1Z2

X1 X2

-YY

XX

XZ

ZZ

ZX

Z1Z2

X1 X2

-YY

Phase space point operators:

Aγ
Ω =

1

dn

∑
b∈Ω

ω−γ(b)Tb

Wigner function:

ρ =
∑
(Ω,γ)

W (Ω, γ)Aγ
Ω

12Raussendorf, Bermejo-Vega, Tyhurst, Okay, MZ. Phys Rev A (2020)
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CNC construction for qubits

States

ρ =
∑
(Ω,γ)

Wρ(Ω, γ)A
γ
Ω

with
∑

(Ω,γ)Wρ(Ω, γ) = 1

Clifford gates:

gAγ
Ωg

† = Ag ·γ
g ·Ω

0 1 2 3 4 5 0 1 2 3 4 5
0.0
0.2
0.4
0.6
0.8
1.0

=⇒

0 1 2 3 4 5 0 1 2 3 4 5
0.0
0.2
0.4
0.6
0.8
1.0

Pauli measurements:

Πs
aA

γ
ΩΠ

s
a =

{
1
2(A

γ
Ω + A

γ+[a,·]
Ω ) if a ∈ Ω

Aγ×a
Ω×a if a /∈ Ω

0 1 2 3 4 5 0 1 2 3 4 5
0.0
0.2
0.4
0.6
0.8
1.0

=⇒

0 1 2 3 4 5 0 1 2 3 4 5
0.0
0.2
0.4
0.6
0.8
1.0
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Examples of CNC operators

CNC operators

▶ Ω is a CNC set

▶ γ is a NCVA on Ω

Aγ
Ω =

1

dn

∑
b∈Ω

ω−γ(b)Tb

Odd d phase space point operators

For a phase space point u ∈ Z2n
d ,

▶ Ω = Z2n
d

▶ γu(·) = −[u, ·]

Aγu =
1

dn

∑
b∈Z2n

d

ω−γu(b)Tb

Stabilizer states
For a stabilizer state |σ⟩ with stabilizer
group S = {ωr(a)Ta|a ∈ I},
▶ Ω = I is a lagrangian subspace of Z2n

d

▶ r is a NCVA on I

|σ⟩ ⟨σ| = Ar
I =

1

dn

∑
a∈I

ω−r(a)Ta
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Multiqubit CNC operators can be classified

For any CNC operator Aγ
Ω,

Aγ
Ω = g(Aγ̃

Ω̃
⊗ |σ⟩ ⟨σ|)g †

where

1. g is a Clifford unitary, |σ⟩ is a stabilizer state

2. Aγ̃

Ω̃
= 1

2n
∑
b∈Ω̃

(−1)γ̃(b)Tb with {Ta,Tb} = 2δa,b ∀a, b ∈ Ω̃

Equivalently,

Ω =

ξ⋃
k=1

⟨ak , I ⟩

where I is an isotropic subspace of Z2n
2 , [ak , g ] = 0 for all g ∈ I , and [ai , aj ] ̸= 0.
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We only need maximal CNC sets for qubits

▶ Suppose Ω, Ω̄ are CNC sets with Ω ⊊ Ω̄

▶ For any NCVA γ on Ω, we can find two NCVAs, γ0, γ1, on Ω̄ such that
▶ γ0(a) = γ1(a) = γ(a) ∀a ∈ Ω
▶ γ1(a) ≡ γ1(a) + 1 mod 2 ∀a ∈ Ω̄ \ Ω

▶ Then 1
2A

γ0
Ω̄

+ 1
2A

γ1
Ω̄

= Aγ
Ω

▶ So for any state

ρ =
∑
(Ω,γ)

Wρ(Ω, γ)A
γ
Ω

if ∃Wρ(Ω, γ) > 0 where Ω is nonmaximal, we can substitute 1
2A

γ0
Ω̄

+ 1
2A

γ1
Ω̄

for Aγ
Ω

without increasing negativity.
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CNC construction for qudits

▶ For odd-prime dimensional qudits, the only maximal CNC set is Z2n
d ,

i.e., the set of all Pauli observables

▶ For multiple qudits, CNC phase space point operators with Ω = Z2n
d are exactly

the Wigner phase space point operators

▶ If the previous result holds for qudits too, then CNC construction is equivalent to
the Wigner function
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An explicit counter-example

▶ For a single qutrit
Z2
3 = ⟨x⟩ ∪ ⟨z⟩ ∪ ⟨x + z⟩ ∪ ⟨x + 2z⟩

▶ There are 9 linear functions on Z2
3 (Wigner function phase space points)

▶ There are 81 NCVAs (CNC phase space points)

▶ For any single-qutrit CNC pair (Ω1, γ1) where γ1 is nonlinear, any n-qutrit Clifford
gate g , and any n − 1-qutrit stabilizer state |σ⟩,

g(Aγ1
Ω1

⊗ |σ⟩ ⟨σ|)g † = Aγ
Ω

is CNC where γ cannot be extended to a NCVA on Z2n
3 .
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Multiqudit CNC operators can be classified

Theorem
For any number of qudits n of any odd prime dimension d, a set Ω ⊂ Z2n

d is closed
under inference if and only if

(i) Ω is a subspace of Z2n
d , or

(ii) Ω has the form

Ω =

ξ⋃
k=1

⟨ak , I ⟩

where I ⊂ E is an isotropic subspace, [g , ai ] = 0 for all g ∈ I , and [ai , aj ] ̸= 0.
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The CNC construction describes quantum computations

States

ρ =
∑
(Ω,γ)

Wρ(Ω, γ)A
γ
Ω

with
∑

(Ω,γ)Wρ(Ω, γ) = 1

Clifford gates:

gAγ
Ωg

† = Ag ·γ
g ·Ω

0 1 2 3 4 5 0 1 2 3 4 5
0.0
0.2
0.4
0.6
0.8
1.0

=⇒

0 1 2 3 4 5 0 1 2 3 4 5
0.0
0.2
0.4
0.6
0.8
1.0

Pauli measurements:

Πs
aA

γ
ΩΠ

s
a ∝ Aγ×s

⟨a⟩+Ω∩a⊥

0 1 2 3 4 5 0 1 2 3 4 5
0.0
0.2
0.4
0.6
0.8
1.0

=⇒

0 1 2 3 4 5 0 1 2 3 4 5
0.0
0.2
0.4
0.6
0.8
1.0
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Classical Simulation Algorithm (W ≥ 0)

When Wρ ≥ 0, it is a probability distribution.

ρ⇒
Stabilizer operations:

Clifford gates+
Pauli Measurements

⇒ Output

1. Sample phase space points Aγ
Ω according to Wρ(Ω, γ),

2. Propagate phase space points through the circuit.
Return definite values for measurements according to γ if a ∈ Ω,
return uniformly random outcomes otherwise.

Update under Clifford unitaries:

0 1 2 3 4 5 0 1 2 3 4 5
0.0
0.2
0.4
0.6
0.8
1.0

⇒

0 1 2 3 4 5 0 1 2 3 4 5
0.0
0.2
0.4
0.6
0.8
1.0

Update under Pauli measurements:

0 1 2 3 4 5 0 1 2 3 4 5
0.0
0.2
0.4
0.6
0.8
1.0

⇒

0 1 2 3 4 5 0 1 2 3 4 5
0.0
0.2
0.4
0.6
0.8
1.0
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Summary

▶ Wigner function negativity is necessary for quantum computational advantage on
odd-dimensional qudits

▶ Wigner functions don’t exist for qubits

▶ CNC construction works for any dimension, including qubits

▶ For odd dimensions, CNC provides a new classical simulation algorithm that can
simulate some quantum computations on Wigner negative states
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