Efficient classical simulation of quantum computation beyond Wigner nonnegativity

Michael Zurel

Department of Mathematics, Simon Fraser University, Canada

November 7, 2025

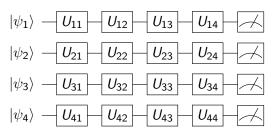
The big question

What is the essential quantum resource that provides the computational speedup over classical computation?

We approach this problem through classical simulation:

▶ If a family of quantum circuits can be efficiently simulated classically, then it offers no quantum computational advantage

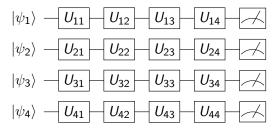
Motivating example



Consider a quantum circuit consisting of

- 1. preparation of a product state $|\psi_1\rangle\otimes|\psi_2\rangle\otimes\cdots$,
- 2. a sequence of local (single-qudit) unitary gates,
- 3. a measurement of each qudit in the computational basis.

Motivating example



This can be simulated efficiently on a classical computer. Therefore,

entanglement is necessary for quantum computational advantage.

Stabilizer subtheory

- 1. Pauli measurements, $\mathcal{P} = \langle X, Y, Z \rangle$
 - For any $a = (a_z, a_x) \in \mathbb{Z}_d^n \times \mathbb{Z}_d^n$,

$$T_a := e^{i\phi(a)} \bigotimes_{k=1}^n Z^{a_z[k]} X^{a_x[k]}$$

- ightharpoonup Eigenvalues are $\omega^s,\ s\in\mathbb{Z}_d$, where $\omega=\exp(2\pi i/d)$
- $lackbox \Pi_a^s$ is a projector corresponding to measurement T_a giving outcome $s \in \mathbb{Z}_d$
- 2. Clifford gates, $C\ell = \mathcal{N}(\mathcal{P})/U(1)$
 - ▶ For any $g \in C\ell$,

$$gT_ag^\dagger=\omega^{\Phi_g(a)}T_{g\cdot a}$$

- 3. Stabilizer states, \mathcal{S}
 - Eigenstates of Pauli operators

Gottesman-Knill theorem¹

Theorem

Any quantum circuit consisting of

- 1. preparation of stabilizer states,
- 2. Clifford unitary gates,
- 3. Pauli measurements

can be efficiently simulated classically.

▶ Quantum computational universality is restored in the circuit model by supplementing the stabilizer subtheory with non-Clifford gates (e.g. *T* gates)

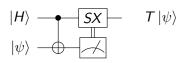
¹Gottesman. arXiv:9807006 (1998)

Quantum computation with magic states (QCM)²

$$\begin{array}{c|c} |\mathit{magic}\rangle \Rightarrow & \mathsf{Stabilizer\ operations:} \\ |\mathit{magic}\rangle \Rightarrow & \mathsf{Clifford\ gates+} \\ |\mathit{magic}\rangle \Rightarrow & \mathsf{Pauli\ Measurements} \end{array} \Rightarrow \mathsf{Output}$$

- ► Stabilizer operations alone ⇒ efficiently simulable
- ightharpoonup Stabilizer operations + magic states \Rightarrow universal

$$|H
angle = rac{1}{\sqrt{2}} \left(|0
angle + e^{i\pi/4} \, |1
angle
ight)$$



²Bravyi and Kitaev. Phys Rev A (2005)

Discrete Wigner function^{3,4}

- ▶ Phase space is \mathbb{Z}_d^{2n}
- Displacement operators are Pauli operators (or Heisenberg-Weyl operators)
- ▶ Parity operator is a sum of all Pauli operators

$$A_0 = \sum_{v \in \mathbb{Z}_d^{2n}} T_v$$

► Phase space point operators are

$$A_u = T_u A_0 T_u^{\dagger}, \quad \forall u \in \mathbb{Z}_d^{2n}$$

▶ The Wigner function $W_{\rho}: \mathbb{Z}_d^{2n} \to \mathbb{R}$ of a state ρ is

$$W_{
ho}(u) = \frac{1}{d^n} \operatorname{Tr}(\rho A_u)$$

³Gross. Ph.D thesis Imperial College London (2005)

⁴Veitch, Ferrie, Gross, Emerson. New J Phys (2012)

Odd-dimensional Wigner function

Phase space points are identified with noncontextual value assignments (NCVAs) on Pauli observables:

functions $\gamma: \mathbb{Z}_d^{2n} \to \mathbb{Z}_d$ satisfying:

$$\omega^{-\gamma(a)-\gamma(b)} T_a T_b = \omega^{-\gamma(a+b)} T_{a+b} \quad \forall \text{ commuting } a, b.$$

Let V be the set of noncontextual assignments on \mathbb{Z}_d^{2n}

For each $\gamma \in V$ define a phase space point operator

$$A^{\gamma} = \frac{1}{d^n} \sum_{b \in \mathbb{Z}_d^{2n}} \omega^{-\gamma(b)} T_b$$

Equivalence of Wigner function negativity and contextuality⁵

For $n \ge 2$, these definitions are equivalent

$$A_u = T_u A_0 T_u^{\dagger} = \sum_{v \in \mathbb{Z}_d^{2n}} T_u T_v T_u^{\dagger} = \sum_{v \in \mathbb{Z}_d^{2n}} \omega^{[u,v]} T_v$$

- ▶ The function $\gamma_u(\cdot) = -[u,\cdot]$ is a NCVA on \mathbb{Z}_d^{2n}
- ightharpoonup Consistency constraints force all NCVAs on \mathbb{Z}_d^{2n} to have this form

⁵Delfosse, Okay, Bermejo-Vega, Browne, Raussendorf. New J Phys **19** 123024 (2017)

Odd-dimensional Wigner function

1. Phase space point operators are

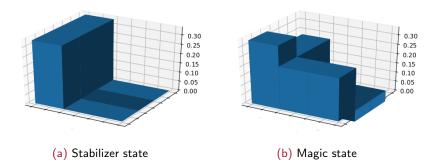
$$A^{\gamma} = rac{1}{d^n} \sum_{b \in \mathbb{Z}_d^{2n}} \omega^{-\gamma(b)} T_b, \quad orall \gamma \in V.$$

- 2. $\{A^{\gamma} \mid \gamma \in V\}$ is a basis for the space of Hermitian operators on Hilbert space
- 3. The Wigner function is defined by

$$\rho = \sum_{\gamma \in V} W_{\rho}(\gamma) A^{\gamma}$$

Example Wigner functions^{6,7}

$$\rho = \sum_{\gamma \in V} W_{\rho}(\gamma) A^{\gamma}$$



Discrete Hudson's theorem: stabilizer states have nonnegative Wigner function

⁶Gross. J Math Phys (2006)

⁷Anwar, Campbell, Browne. New J Phys (2012)

Quasiprobability representations for quantum computation

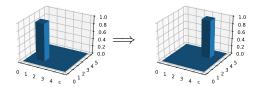
<u>States</u>

$$ho = \sum_{\gamma \in \mathcal{V}} W_{
ho}(\gamma) A^{\gamma}$$

with
$$\sum_{\gamma} W_{\rho}(\gamma) = 1$$

Clifford gates:

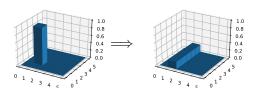
$$gA^{\gamma}g^{\dagger}=A^{g\cdot\gamma}$$



Pauli measurements:

$$\Pi_{a}^{s}A^{\gamma}\Pi_{a}^{s}=\sum_{\gamma'\in\mathcal{V}}q_{\gamma,a}(\gamma',s)A^{\gamma'}$$

with
$$q_{\gamma,a} \geq 0$$
, $\sum q_{\gamma,a}(\gamma',s) = 1$



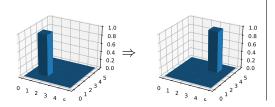
Classical Simulation Algorithm ($W \ge 0$)

When $W_{\rho} \geq 0$, it is a probability distribution.

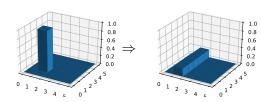
$$\rho \Rightarrow \begin{array}{|c|c|c|} & \text{Stabilizer operations:} \\ & \text{Clifford gates} + \\ & \text{Pauli Measurements} \end{array} \Rightarrow \text{Output}$$

- 1. Sample phase space points A^{γ} according to $W_{\rho}(\gamma)$,
- 2. Propagate phase space points through the circuit. Return definite values for measurements according to γ .

Update under Clifford gates:



Update under Pauli measurements:



Bound magic states

- ▶ There exist nonstabilizer states with $W_{\rho} \ge 0$
- ► These are called bound magic states

Wigner negativity is necessary for quantum computational advantage and this is a strictly stronger criterion than being nonstabilizer

No-go results for existence of Wigner functions

- 1. No Wigner function for even-dimensional qudits is Clifford covariant^{8,9}
- No Wigner function for even-dimensional qudits is positivity preserving under Pauli measurements^{8,9}
- 3. Memory lower bound $\frac{1}{2}n(n-1)$ bits required to simulate contextuality 10 \Rightarrow No qubit Wigner function can have a phase space where the phase point operators form an operator basis

⁸Raussendorf, Okay, MZ, Feldmann. Quantum 7, 979 (2023)

⁹Schmid, Du, Selby, Pusey. Phys Rev Lett (2022)

¹⁰Karanjai, Wallman, Bartlett. arXiv:1802.07744

The trouble with qubits¹¹

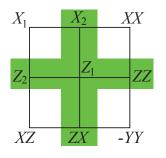
- ► For qudits, phase space points are identified with noncontextual value assignements for Pauli observables
- ► For qubits, we have state-independent proofs of contextuality like Mermin square
- ➤ ⇒ Noncontextual assignments for multiple qubits do not exist

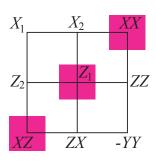
¹¹Mermin. Rev Mod Phys (1993)

CNC construction for qubits¹²

We restrict to subsets $\Omega \subset \mathbb{Z}_d^{2n}$ of Pauli operators satisfying:

- ▶ If $a, b \in \Omega$ with $T_a T_b = T_b T_a$, then $a + b \in \Omega$
- lacktriangle There exists a noncontextual value assignment for Ω





Phase space point operators:

$$A_{\Omega}^{\gamma} = \frac{1}{d^n} \sum_{b \in \Omega} \omega^{-\gamma(b)} T_b$$

Wigner function:

$$ho = \sum_{(\Omega,\gamma)} W(\Omega,\gamma) A_{\Omega}^{\gamma}$$

¹²Raussendorf, Bermejo-Vega, Tyhurst, Okay, MZ. Phys Rev A (2020)

CNC construction for qubits

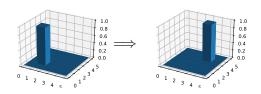
<u>States</u>

$$\rho = \sum_{(\Omega, \gamma)} W_{\rho}(\Omega, \gamma) A_{\Omega}^{\gamma}$$

with
$$\sum_{(\Omega,\gamma)} W_{\rho}(\Omega,\gamma) = 1$$

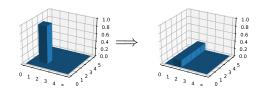
Clifford gates:

$$gA_{\Omega}^{\gamma}g^{\dagger}=A_{g\cdot\Omega}^{g\cdot\gamma}$$



Pauli measurements:

$$\Pi_a^s A_\Omega^\gamma \Pi_a^s = \begin{cases} \frac{1}{2} (A_\Omega^\gamma + A_\Omega^{\gamma + [a, \cdot]}) & \text{if } a \in \Omega \\ A_{\Omega \times a}^{\gamma \times a} & \text{if } a \notin \Omega \end{cases}$$



Examples of CNC operators

CNC operators

- $ightharpoonup \Omega$ is a CNC set
- $ightharpoonup \gamma$ is a NCVA on Ω

$$A_{\Omega}^{\gamma} = \frac{1}{d^n} \sum_{b \in \Omega} \omega^{-\gamma(b)} T_b$$

Odd *d* phase space point operators

For a phase space point $u \in \mathbb{Z}_d^{2n}$,

$$ightharpoonup \Omega = \mathbb{Z}_d^{2n}$$

$$A^{\gamma_u} = \frac{1}{d^n} \sum_{b \in \mathbb{Z}_d^{2n}} \omega^{-\gamma_u(b)} T_b$$

Stabilizer states

For a stabilizer state $|\sigma\rangle$ with stabilizer group $S = \{\omega^{r(a)} T_a | a \in I\}$,

- $ightharpoonup \Omega = I$ is a lagrangian subspace of \mathbb{Z}_d^{2n}
- r is a NCVA on I

$$|\sigma\rangle\langle\sigma|=A_I^r=rac{1}{d^n}\sum_{a\in I}\omega^{-r(a)}T_a$$

Multiqubit CNC operators can be classified

For any CNC operator A_{Ω}^{γ} ,

$$A_{\Omega}^{\gamma}=g(A_{ ilde{\Omega}}^{ ilde{\gamma}}\otimes\ket{\sigma}ra{\sigma})g^{\dagger}$$

where

- 1. g is a Clifford unitary, $|\sigma\rangle$ is a stabilizer state
- 2. $A_{\tilde{\Omega}}^{\tilde{\gamma}} = \frac{1}{2^n} \sum_{b \in \tilde{\Omega}} (-1)^{\tilde{\gamma}(b)} T_b$ with $\{T_a, T_b\} = 2\delta_{a,b}$ $\forall a, b \in \tilde{\Omega}$

Equivalently,

$$\Omega = \bigcup_{k=1}^{\xi} \langle a_k, I \rangle$$

where I is an isotropic subspace of \mathbb{Z}_2^{2n} , $[a_k,g]=0$ for all $g\in I$, and $[a_i,a_j]\neq 0$.

We only need maximal CNC sets for qubits

- ► Suppose Ω, $\bar{Ω}$ are CNC sets with $Ω ⊆ \bar{Ω}$
- For any NCVA γ on Ω , we can find two NCVAs, γ_0 , γ_1 , on $\bar{\Omega}$ such that
 - $ightharpoonup \gamma_0(a) = \gamma_1(a) = \gamma(a) \quad \forall a \in \Omega$
- ▶ Then $\frac{1}{2}A_{\bar{\Omega}}^{\gamma_0}+\frac{1}{2}A_{\bar{\Omega}}^{\gamma_1}=A_{\Omega}^{\gamma}$
- ► So for any state

$$\rho = \sum_{(\Omega, \gamma)} W_{\rho}(\Omega, \gamma) A_{\Omega}^{\gamma}$$

if $\exists W_{\rho}(\Omega, \gamma) > 0$ where Ω is nonmaximal, we can substitute $\frac{1}{2}A_{\bar{\Omega}}^{\gamma_0} + \frac{1}{2}A_{\bar{\Omega}}^{\gamma_1}$ for A_{Ω}^{γ} without increasing negativity.

CNC construction for qudits

For odd-prime dimensional qudits, the only maximal CNC set is \mathbb{Z}_d^{2n} , i.e., the set of all Pauli observables

For multiple qudits, CNC phase space point operators with $\Omega = \mathbb{Z}_d^{2n}$ are exactly the Wigner phase space point operators

▶ If the previous result holds for qudits too, then CNC construction is equivalent to the Wigner function

An explicit counter-example

► For a single qutrit

$$\mathbb{Z}_3^2 = \langle x \rangle \cup \langle z \rangle \cup \langle x + z \rangle \cup \langle x + 2z \rangle$$

- ▶ There are 9 linear functions on \mathbb{Z}_3^2 (Wigner function phase space points)
- ► There are 81 NCVAs (CNC phase space points)
- For any single-qutrit CNC pair (Ω_1, γ_1) where γ_1 is nonlinear, any n-qutrit Clifford gate g, and any n-1-qutrit stabilizer state $|\sigma\rangle$,

$$g(A_{\Omega_1}^{\gamma_1}\otimes\ket{\sigma}ra{\sigma})g^\dagger=A_{\Omega}^{\gamma}$$

is CNC where γ cannot be extended to a NCVA on \mathbb{Z}_3^{2n} .

Multiqudit CNC operators can be classified

Theorem

For any number of qudits n of any odd prime dimension d, a set $\Omega \subset \mathbb{Z}_d^{2n}$ is closed under inference if and only if

- (i) Ω is a subspace of \mathbb{Z}_d^{2n} , or
- (ii) Ω has the form

$$\Omega = \bigcup_{k=1}^{\xi} \langle a_k, I \rangle$$

where $I \subset E$ is an isotropic subspace, $[g, a_i] = 0$ for all $g \in I$, and $[a_i, a_j] \neq 0$.

The CNC construction describes quantum computations

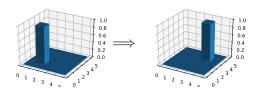
<u>States</u>

$$\rho = \sum_{(\Omega, \gamma)} W_{\rho}(\Omega, \gamma) A_{\Omega}^{\gamma}$$

with
$$\sum_{(\Omega,\gamma)} W_{\rho}(\Omega,\gamma) = 1$$

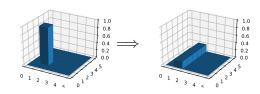
Clifford gates:

$$gA_{\Omega}^{\gamma}g^{\dagger}=A_{g\cdot\Omega}^{g\cdot\gamma}$$



Pauli measurements:

$$\Pi^s_a A^\gamma_\Omega \Pi^s_a \propto A^{\gamma imes s}_{\langle a \rangle + \Omega \cap a^\perp}$$



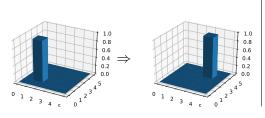
Classical Simulation Algorithm ($W \ge 0$)

When $W_{\rho} \geq 0$, it is a probability distribution.

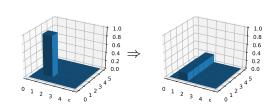
 $\rho \Rightarrow \begin{array}{|c|c|c|c|}\hline \text{Stabilizer operations:}\\\hline \text{Clifford gates}+\\\hline \text{Pauli Measurements}\\\hline \end{array} \Rightarrow \text{Output}$

- 1. Sample phase space points A_{Ω}^{γ} according to $W_{\rho}(\Omega, \gamma)$,
- 2. Propagate phase space points through the circuit. Return definite values for measurements according to γ if $a \in \Omega$, return uniformly random outcomes otherwise.

Update under Clifford unitaries:



Update under Pauli measurements:



Summary

► Wigner function negativity is necessary for quantum computational advantage on odd-dimensional qudits

- Wigner functions don't exist for qubits
- ► CNC construction works for any dimension, including qubits

► For odd dimensions, CNC provides a new classical simulation algorithm that can simulate some quantum computations on Wigner negative states