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Motivation

✓ quantum tomography and state reconstruction
& quasiprobability representation
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Motivation

? what if measured data Q⃗ = [Q(k)]k are

informationally incomplete, failing full reconstruction

informationally overcomplete, failing unique reconstruction

× quasiprobabilities P⃗ = [P(k)]k

do not describe all parts of the quantum state ρ̂

do not uniquely identify quantum properties, P(k) ≱ 0

↷ goal. construction of measurement-based quasiprobabilities
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Formalism

▶ premise. consider informationally complete measurement operators {Π̂k}k
and outcomes Q(k) = tr

(
Π̂†
j ρ̂
)

▶ metric tensor gj ,k = tr
(
Π̂†
j Π̂k

)
→ yields relation:

Q⃗ = g P⃗ → P⃗ = g−1Q⃗

Def. P⃗ ≥ 0 if state non-negative mixture

of measurement operators, ρ̂ =
∑
j

P(j)Π̂j

↷ quantum superpositions via P⃗ ≱ 0



 

Formalism

▶ partial inversion 0 ≤ σ ≤ 1:
P⃗σ = g−σQ⃗

(e.g., P⃗0 = Q⃗ and P⃗1 = P⃗)

▶ g not invertible (overcomplete) → pseudo-inverse g−1

P⃗σ = g−σQ⃗ +N⃗ , with g N⃗ = 0

optimization over all possible N⃗

▶ non-observed components, ν̂ ̸= 0 s.t. ∀k : tr
(
Π̂†
k ν̂

)
= 0 (incomplete)

→ ρ̂ =
∑
k

P(k)Π̂k +ν̂

nonclassicality agnostic w.r.t. ν̂
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Elementary examples

✓ Kirkwood–Dirac distributions

weak measurements Π̂(a,b) =
|a⟩⟨b|
⟨b|a⟩

for orthonormal bases A and B

with |a⟩ ∈ A and |b⟩ ∈ B and ⟨a|b⟩ ≠ 0

outcomes Q(a, b) =
⟨b|ρ̂|a⟩
⟨b|a⟩

and metric tensor g = diag
[
|⟨a|b⟩|−2

]
(a,b)∈A×B

→ P(a, b) = ⟨a|b⟩⟨b|ρ̂|a⟩ Kirkwood–Dirac quasiprobabilities



 

Elementary examples

✓ s-parametrized phase-space quasiprobabilities

eight-port homodyning Π̂α =
|α⟩⟨α|
π

for coherent states |α⟩ with α ∈ C

outcomes Husimi Q(α) =
⟨α|ρ̂|α⟩
π

metric tensor via Gaussian kernel gα,β = π−2 exp
(
−|α− β|2

)
→ Pσ(α) = πσP(α; s) as (s = 2σ − 1)-parametrized quasiprobabilities

e.g., σ = 1/2 corresponds to s = 0 (Wigner function)



 

Qubit application: informationally complete POVM

▶ qubit state ρ̂ ∝
(
1 + z x − iy
x + iy 1− z

)

▶ POVM Π̂k ∝ |ψk⟩⟨ψk | for k ∈ {0, 1, 2, 3}

▶ informationally complete Q⃗ ∝


3 3 0 0

3 −1 2
√
2 0

3 −1 −
√
2

√
6

3 −1 −
√
2 −

√
6


︸ ︷︷ ︸

bijective


1
z
x
y





 

Qubit application: informationally complete POVM



 

Qubit application: incomplete POVM

▶ qubit state ρ̂ ∝
(
1 + z x − iy
x + iy 1− z

)

▶ POVM Π̂k ∝ |ψk⟩⟨ψk | for k ∈ {0, 1, 2}

▶ informationally incomplete Q⃗ ∝

2 0 2 0

2 0 −1
√
3

2 0 −1 −
√
3


︸ ︷︷ ︸

not injective


1
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



 

Qubit application: incomplete POVM



 

Qubit application: overcomplete POVM

▶ qubit state ρ̂ ∝
(
1 + z x − iy
x + iy 1− z

)

▶ POVM Π̂k ∝ |ψk⟩⟨ψk | for k ∈ {0, 1, 2, 3, 4, 5}

▶ informationally overcomplete Q⃗ ∝



1 1 0 0
1 −1 0 0
1 0 1 0
1 0 −1 0
1 0 0 1
1 0 0 −1


︸ ︷︷ ︸

not surjective


1
x
y
z





 

Qubit application: overcomplete POVM



 

Qubit application: in- & overcomplete POVM

▶ qubit state ρ̂ ∝
(
1 + z x − iy
x + iy 1− z

)

▶ POVM Π̂k ∝ |ψk⟩⟨ψk | for k ∈ {0, 1, 2, 3}

▶ informationally in- & overcomplete Q⃗ ∝


1 1 0 0
1 −1 0 0
1 0 1 0
1 0 −1 0


︸ ︷︷ ︸

not surjective & not injective


1
x
y
z





 

Qubit application: in- & overcomplete POVM



 

Summary

✓ practical problem: quasiprobabilities from measurements

✓ including incomplete and overcomplete measurements:
still possible to assess nonclassicality

✓ partial and pseudo-inversion

✓ Kirkwood–Dirac & s-parametrized as special cases

✓ proof-of-concept qubit measurements
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