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Motivation

quantum tomography and state reconstruction
& quasiprobability representation
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Motivation

what if measured data Q@ = [Q(k)]x are

informationally incomplete, failing full reconstruction

informationally overcomplete, failing unique reconstruction
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Motivation

what if measured data Q@ = [Q(k)]x are
informationally incomplete, failing full reconstruction
informationally overcomplete, failing unique reconstruction
quasiprobabilities P = [P(k)]x
do not describe all parts of the quantum state p

do not uniquely identify quantum properties, P(k) # 0
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Motivation <4 }. .
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what if measured data Q@ = [Q(k)]x are

informationally incomplete, failing full reconstruction

informationally overcomplete, failing unique reconstruction

quasiprobabilities P = [P(k)]x
do not describe all parts of the quantum state p

do not uniquely identify quantum properties, P(k) # 0

construction of measurement-based quasiprobabilities



Formalism | }. .
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consider informationally complete measurement operators {ﬁk}k
and outcomes Q(k) = tr(I'IJT.ﬁ)

metric tensor gj x = tr(ﬁ}ﬁk) yields relation:

@:gﬁ — ﬁ:gle

P > 0 if state non-negative mixture

of measurement operators, | p = Z P(j)ﬁJ

quantum superpositions via P #0



Formalism

partial inversion 0 < o < 1:
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(e.g., 130 — Q@ and 131 = 13)
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Formalism

partial inversion 0 < o < 1:

g not invertible (overcomplete)

pseudo-inverse g~

RIOCRC)

(e.g., 130 —Qand P, = 13)
1

. with gN=0

optimization over all possible N



Formalism
RIOCE
partial inversion 0 < o < 1:
(e.g., 130 — Q@ and 131 = 13)

g not invertible (overcomplete) pseudo-inverse g~ !

— = —

P,=g Q@ +N, with ghN=0

optimization over all possible N

non-observed components, 7 # 0 s.t. Vk : tr(ﬁiﬁ) = 0 (incomplete)
p= 3 PRI
‘ y
»

nonclassicality agnostic w.r.t. ¥ <



Elementary examples < }. .
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Kirkwood-Dirac distributions

for orthonormal bases A and B

with |a) € A and |b) € B and (alb) # 0

weak measurements [, ,) =

(bla)

(b|p|a)
(bla)

and metric tensor g = diag|[|(a|b)|~?]

outcomes Q(a, b) =

(a,p)eAxB

P(a, b) = (a|lb)({b|pla)  Kirkwood-Dirac quasiprobabilities



Elementary examples < }. .
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s-parametrized phase-space quasiprobabilities

eight-port homodyning 1, = @i (e for coherent states |«) with aw € C
™
outcomes Husimi Q(«) = {alpla)
T

metric tensor via Gaussian kernel g, 5 = 72 exp (—|a — 3]%)

P,(a) =7 P(c;s) as (s =20 — 1)-parametrized quasiprobabilities
e.g., 0 = 1/2 corresponds to s = 0 (Wigner function)

g
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Qubit application: informationally complete POVM

. ~ 1—|—Z X—Iy POVM
qubit state p <x+ iy o1 z)

POVM [y o |1hx) (x| for k € {0,1,2,3}

3 3 0 0 1
. . = 3 -1 22 0 z
informationally complete Q 3 -1 2 B N
3 -1 —VvV2 -6/ \y

bijective



Qubit application: informationally complete POVM




Qubit application: incomplete POVM | }} }.4.
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. A 1 — incomplete POVM
qubit state p < tz X Iy)

x+iy l1l—=z

POVM [y o |1} (] for k € {0,1,2}

2 0 2 0 1
informationally incomplete Q x |2 0 -1 V3 )Z(
2 0 -1 —/3 y

not injective



Qubit application: incomplete POVM




Qubit application: overcomplete POVM < }} }.4.
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H ~ 1 V4 X — I overcompletePOVM
qubit state g < t y>

x+iy 1—z

1 1 0 0
1 -1 0 O 1
informationally overcomplete Q x 1o 10 x
1 0 -1 0 y
1 0 0 1 z
1 0 VO 1 }}

not surjective 4



Qubit application: overcomplete POVM




Qubit application: in- & overcomplete POVM

1+~z x—iy)

qubit state p <x iy 1-z

CO o)

incomplete & overcomplete POVM

T

POVM fly o [4) (k] for k € {0,1,2,3}

informationally in- & overcomplete @

1 1 0 O 1
1 -1 0 O X
1 0 1 0 y
1 0 -1 0 z
not surjective & not injective }
»



Qubit application: in- & overcomplete POVM




Summary

practical problem: quasiprobabilities from measurements

including incomplete and overcomplete measurements:
still possible to assess nonclassicality

partial and pseudo-inversion

Kirkwood—Dirac & s-parametrized as special cases

proof-of-concept qubit measurements
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