Conditional expectations in quantum mechanics and Kirkwood-Dirac quasiprobability distributions

Raymond Brummelhuis (Univ. de Reims)

joint work with Stephan de Bièvre, Christopher Langrenez and Matéo Spriet (Univ. Lille)

Executive summary

- ▶ There is a (there are) natural notion(s) of conditional expectation $\mathbb{E}_{\hat{\rho}}(\hat{X}|\hat{Y})$ of not necessarily commuting observables in QM, with similar properties as classically probabilistic cond. expectations
- ▶ Unlike joint probability distributions of \hat{X} , \hat{Y} which in general does not exist
- Quasiprobability distributions do (in great abundance)
- ► To any quasidistribution with Born marginals we can also associate an alternative conditional expectation
- Coincides with the quantum mechanical one iff the quasiproba. is the Kirkwood-Dirac one.

References

- M. Spriet, C. Langrenez, R. Brummelhuis, S. de Bièvre, What is special about the Kirkwood Dirac distribution? arXiv:2511.01996 (2025) (quant. phys.)
- R. Brummelhuis, Conditional expectations of quantum observables: I. Bohm momentum as best predictor of momentum given position. J. Phys. A: Math. Theor. 58 (2025), 455304
- R. Brummelhuis, Conditional expectations of quantum observables: II. A causal model for the Pauli equation.
 J. Phys. A: Math. Theor. 58 (2025), 455305
- ▶ R. Brummelhuis, Conditional expectations in quantum mechanics, arXiv:2411.08532 (2024) (quant. phys.)

Conditional expectation, classically

 $X,\ Y$ random variables taking values in finite sets $\mathrm{Ran}(X)$, $\mathrm{Ran}(Y)\subset\mathbb{C}$

Definition of $\mathbb{E}_{\mathbb{P}}(X|Y)$ from joint probability:

▶ Conditional probabilities $(x \in Ran(X), y \in Ran(Y))$

$$\mathbb{P}(X = x | Y = y) = \frac{\mathbb{P}(X = x, Y = y)}{\mathbb{P}(Y = y)}$$

▶ Conditional expectation of X given that Y = y:

$$e_{X|Y}(y) := \sum_{x \in \text{Ran}(X)} x \mathbb{P}(X = x|Y = y)$$

• $\mathbb{E}_{\mathbb{P}}(X|Y) := e_{X|Y}(Y)$: random variable

Conditional expectation, classically

Two characterizations:

1. $X \to \mathbb{E}_{\mathbb{P}}(X|Y)$ unique map of rvs X to rvs that are functions of Y such that for all X,

$$\mathbb{E}_{\mathbb{P}}(g(Y)X|Y) = g(Y)\mathbb{E}_{\mathbb{P}}(X|Y)$$

 $\mathbb{E}_{\mathbb{P}}(\mathbb{E}_{\mathbb{P}}(X|Y)) = \mathbb{E}_{\mathbb{P}}(X)$

2. $\mathbb{E}_{\mathbb{P}}(X|Y)$ is the function f(Y) of Y which minimizes $\mathbb{E}_{\mathbb{P}}(|X - f(Y)|^2)$

Conditional expectation = best predictor of X by a function f(Y) of Y (nonlinear least squares)

Quantum conditional expectation

 \hat{X} , \hat{Y} observables (self-adjoint operators) on a Hilbert space H with given state $\hat{\rho}$ (mixed or pure) Define the cond. expectation of \hat{X} given \hat{Y} as either

ightharpoonup real function $f(\hat{Y})$ of \hat{Y} which minimizes

$$\operatorname{Tr}((\hat{X}-f(\hat{Y}))^2\hat{\rho})$$

(if you want the cond. expect. of an observable to be an observable, i.e. self-adjoint) or

complex function which minimizes

$$\operatorname{Tr}((\hat{X}-f(\hat{Y}))^{\dagger}(\hat{X}-f(\hat{Y}))\hat{\rho})$$

(or perhaps $\operatorname{Tr}((\hat{X} - f(\hat{Y}))(\hat{X} - f(\hat{Y}))^{\dagger}\hat{\rho})$, or some convex combination: choices to be made ...)

Examples

Real (self-adjoint) conditional expectation of momentum operator $\hat{P} = i^{-1}\nabla$ given position operator \hat{X} for pure state $\psi \in L^2(\mathbb{R}^n)$:

$${
m Im} rac{
abla \psi(x)}{\psi(x)} =
abla S(x), \; \psi = Re^{iS}: \; {
m Bohm \; momentum}$$

Complex version

$$\frac{\nabla \psi(x)}{\psi(x)} = \frac{\langle x|P|\psi\rangle}{\langle x|\psi\rangle}$$
 : weak value

Left quantum conditional expectation

Definition

 $\mathbb{E}_{\hat{
ho}}(\hat{X}|\hat{Y}) = f(\hat{Y})$ where f complex function which minimizes

$$\operatorname{Tr}\left((\hat{X}-f(\hat{Y}))^{\dagger}(\hat{X}-f(\hat{Y}))\hat{
ho}\right);$$

also defined for non-self adjoint \hat{X} , unique a.e. with respect to $d\text{Tr}(\Pi(\lambda)\rho)$, $\Pi(\lambda)$ spectral resolution of \hat{Y}

To simplify: finite dimensional Hilbert space, Π_y spectral projections of \hat{Y} , $y \in \sigma(\hat{Y}) = \text{spectrum of } \hat{Y}$

$$\mathbb{E}_{\hat{\rho}}(\hat{X}|\hat{Y}) = \sum_{y \in \sigma(\hat{Y})} \frac{\operatorname{Tr}(\Pi_{y}\hat{X}\hat{\rho})}{\operatorname{Tr}(\Pi_{y}\hat{\rho})} \Pi_{y}$$

for states $\hat{
ho}$ for which the denominator eq 0 for all $y \in \sigma(\hat{Y})$

Characterization by *left* \hat{Y} -equivariance plus iterated expectations

Theorem $\mathbb{E}_{\hat{\rho}}(\hat{X}|\hat{Y})$ unique function of \hat{Y} such that

- 1. $\mathbb{E}_{\hat{\rho}}(g(\hat{Y})\hat{X}|\hat{Y}) = g(\hat{Y})\mathbb{E}_{\hat{\rho}}(\hat{X}|\hat{Y}), \forall \text{ functions } g$
- 2. $\operatorname{Tr}(\mathbb{E}_{\hat{\rho}}(\hat{X}|\hat{Y})\hat{\rho}) = \operatorname{Tr}(\hat{X}\hat{\rho})$

Equivalent way of writing 2:

$$\mathbb{E}_{\hat{
ho}}(\mathbb{E}_{\hat{
ho}}(\hat{X}|\hat{Y})) = \mathbb{E}_{\hat{
ho}}(\hat{X})$$

where $\mathbb{E}_{\hat{
ho}}(\hat{X}) := \mathrm{Tr}(\hat{X}\hat{
ho})$: iterated expectations property

Property 1: $left-\hat{Y}$ equivariance

Operational meaning: weak values, conditioned von Neumann measurements

Change notation: $\hat{X}, \hat{Y} \rightarrow \hat{A}, \hat{B}$

 \hat{X} : meter reading, conjugate momentum \hat{P}

Meter-system interaction $U(\gamma)=e^{-i\gamma\hat{A}\hat{P}}$ on (tensor-) product Hilbert space

 φ : initial meter state (e.g. narrow Gaussian), projection $|\varphi\rangle\langle\varphi|$

Conditioned von Neumann mesurement of meter reading given that $\hat{B} = b$ (post-selection)

$$\mathbb{E}_{\gamma}(\hat{X}|B=b) = \frac{\operatorname{Tr}(\hat{X}\Pi_{b}U_{\gamma}(\hat{\rho}\otimes|\varphi\rangle\langle\varphi|)U_{\gamma}^{*})}{\operatorname{Tr}(\Pi_{b}U_{\gamma}(\hat{\rho}\otimes|\varphi\rangle\langle\varphi|)U_{\gamma}^{*})}$$

classical conditional expectation: \hat{X} and \hat{B} commute!

Weak limit

First-order variation in γ :

$$\frac{d}{d\gamma} \mathbb{E}_{\gamma}^{cl}(\hat{X}|\hat{B} = b)|_{\gamma=0} = \operatorname{Re} \mathbb{E}_{\hat{\rho}}(\hat{A}|\hat{B} = b) + \\ 2\operatorname{Im} \mathbb{E}_{\hat{\rho}}(\hat{A}|\hat{B} = b) \cdot \operatorname{cov}_{\varphi}(\hat{X}, \hat{P})$$

$$\operatorname{cov}_{\varphi}(\hat{X}, \hat{P}) = \left\langle \frac{1}{2}(\hat{X}\hat{P} + \hat{P}\hat{X}) \right\rangle_{C} - \langle \hat{P} \rangle_{\varphi} \langle \hat{X} \rangle_{\varphi}$$

cf. J. Dressel, A. N. Jordan, Significance of the imaginary part of the real value, Phys. Rev. A **85**, 012107 (2012)

Conditional expectation of meter momentum (post interaction)

$$\frac{d}{d\gamma}\mathbb{E}_{\gamma}(\hat{P}|\hat{B}=b)|_{\gamma=0}=2\mathrm{Im}\,\mathbb{E}_{\hat{P}}(\hat{A}|\hat{B}=b)\cdot\mathrm{var}_{\varphi}(\hat{P})$$

where

$$\operatorname{var}_{\varphi}(\hat{P}) = \langle \hat{P}^{2} \rangle_{\varphi} - \langle \hat{P} \rangle_{\varphi}^{2}$$
$$= ||\hat{P}\varphi||^{2} - \langle \varphi |\hat{P}|\varphi \rangle^{2}$$

(Dressel & Jordan, loc. cit.)

Conditional expectations from quasi-probabilities

 \hat{A} , \hat{B} : simple spectra: $\#\sigma(\hat{A}) = \#\sigma(\hat{B}) = \dim(H)$

 $(S_{a,b})_{(a,b)\in\sigma(\hat{A}) imes\sigma(\hat{B})}$ basis of $L(H)=\{$ linear operators on $H\}$

Definition Born-compatible if (with $\Pi_a^{\hat{A}}, \Pi_b^{\hat{B}}$ spectral projections of \hat{A}, \hat{B})

$$\sum_{a} S_{a,b} = \Pi_{b}^{\hat{B}}, \ \sum_{b} S_{a,b} = \Pi_{a}^{\hat{A}}$$

Then

$$Q_{a,b}(\hat{
ho}) := \operatorname{Tr}(S_{a,b}^{\dagger}\hat{
ho})$$

is a quasi-probability (complex measure of mass 1) on $\sigma(\hat{A}) \times \sigma(\hat{B})$ with Born probabilities of \hat{A} and \hat{B} as marginals:

$$\sum_{b} Q_{a,b}(\rho) = \operatorname{Tr}(\Pi_a^{\hat{A}} \hat{\rho}), \ \sum_{a} Q_{a,b}(\rho) = \operatorname{Tr}(\Pi_b^{\hat{B}} \hat{\rho})$$

 $T_{a,b}$ dual basis: $\operatorname{Tr}(S_{a,b}^{\dagger}T_{a'b'}) = \delta_{aa'}\delta_{bb'}$

$$\widetilde{Q}_{a,b}(\hat{X}) =_{\operatorname{def.}} \operatorname{Tr}(T_{a,b}^{\dagger}\hat{X}), \ \ \hat{X} \in L(H)$$

"Overlap formula"

$$\operatorname{Tr}(\hat{\rho}\hat{X}^{\dagger}) = \sum_{(a,b) \in \sigma(\hat{A}) \times \sigma(\hat{B})} \overline{\tilde{Q}_{a,b}(\hat{X})} Q_{a,b}(\hat{\rho})$$

$$\hat{X} \Leftrightarrow \text{random variable } (a,b) o \overline{\widetilde{Q}_{a,b}(\hat{X}^\dagger)} \text{ on } \sigma(\hat{A}) imes \sigma(\hat{B})$$

Born-compatible quasi-probabilistic representation of quantum mechanics on ${\cal H}$

Examples

- 1. Kirkwood-Dirac: $S_{a,b} = \Pi_a^{\hat{A}} \Pi_b^{\hat{B}}$, assuming none of these are 0 (eigenvectors of \hat{A} not perpendicular to any of those of \hat{B})
- 2. Gross-Wigner on $\mathbb{Z}/n\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z}$
- Many others (many ways of choosing n² independent vectors in L(H) subject to 2n conditions where n = dim(H))
 (Which ones are physically relevant?)

Q-conditional expectation

Definition

1. Quasi-proba that $\hat{A} = a$ given that $\hat{B} = b$:

$$Q_{a|b}(\hat{\rho}) := \frac{Q_{a,b}(\hat{\rho})}{\sum_a Q_{a,b}(\hat{\rho})} = \frac{Q_{a,b}(\hat{\rho})}{\mathrm{Tr}(\Pi_b^{\hat{B}}\hat{\rho})}$$

2. Q-cond. expectation of \widehat{X} given \widehat{B} : operator defined by

$$\mathbb{E}^Q_{\hat{\rho}}(\hat{X}|\hat{B}) = \sum_{b \in \sigma(\hat{B})} \left(\sum_{a \in \sigma(\hat{A})} \overline{\tilde{Q}_{a,b}(\hat{X}^{\dagger})} Q_{a|b}(\hat{\rho}) \right) \Pi_b^{\hat{B}}$$

Satisfies the iterated expectation property but is in general not left \hat{B} -equivariant, except for KD

Characterization of KD

Theorem We have that for all \hat{X} and all functions f

$$\mathbb{E}_{\hat{\rho}}^{Q}(f(\hat{B})\hat{X}|\hat{B}) = f(\hat{B})\mathbb{E}_{\hat{\rho}}(\hat{X}|\hat{B})$$

iff (Q,\widetilde{Q}) is the Kirkwood-Dirac quasiprobability representation; in particular $Q_{ab}(\hat{\rho})=Q_{a,b}^{KD}(\hat{\rho}):=\mathrm{Tr}(\Pi_b^{\hat{B}}\Pi_a^{\hat{A}}\hat{\rho})$ and the Q^{KD} -conditional expectation is the quantum conditional expectation (defined by minimisation)

Proof. Characterization of QM cond. expectation implies

$$\sum_{a\in\sigma(\hat{A})}\overline{\tilde{Q}_{a,b}(\hat{X}^{\dagger})}Q_{a,b}(\hat{\rho})=\mathrm{Tr}(\mathsf{\Pi}_{b}^{\hat{B}}\hat{X});$$

+ special choice $X = S_{a,b}$

Variational formula for $Q_{a,b}^{KD}$

Variational characterisation of $\mathbb{E}_{\hat{
ho}}^{Q^{KD}}(\hat{X}|\hat{B})=\mathbb{E}_{\hat{
ho}}(\hat{X}|\hat{B})$ implies that

$$\begin{split} Q_{a,b}^{KD}(\hat{\rho}) &= \operatorname{argmin}_{\lambda \in \mathbb{C}} \mathbb{E}_{\hat{\rho}} \left(\left| \langle b \rangle_{\rho} \Pi_{a}^{\hat{A}} - \lambda \Pi_{b}^{\hat{B}} \right|^{2} \right) \end{split}$$
 where $\langle b \rangle_{\rho} = \operatorname{Tr}(\Pi_{b}^{\hat{B}} \hat{\rho})$ and $|X|^{2} := X^{\dagger} X$