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Mesoscopic coherence of collective charge motion at um scale, mK temperature

EM Fields of charge motion described by Circuit QED

Anharmonic oscillator potentials treated as artificial atoms, with lowest 2 levels as qubit
Qubit levels controlled by resonant microwave field drives

Qubit levels measured via dispersive frequency-shift of coupled microwave resonator mode



Circuit QED Overview

= e inductive (magnetic) flux: &
- ||||||||,-‘ - a =T :
,:‘{-}'.II_ ~

Canonically conjugate dynamical variables: [®, Q] = ix

e capacitive (electric) charge: Q

@0 ¢Z, (I)O = h/Ze
(2e)

I |

Dimensionless conjugate variables:

(6, 7] =

c Example: Harmonic Oscillator

— Useful circuit, but bad qubit:

Can't isolate specific level pairs since
all energy gaps are identical

Flux, ¢



Quantum Pendulum

. o A EJ 79 EJ 24
 SuPER- Josephson Junction: H; = E; (1 — cos gb) alry o — Zgb + -
TUNNEL"~ n é (2) . . . .
BARRER | SUPER- ¢ =—, E;=— Actsasnonlinear inductance => anharmonic oscillator
CONDUCTOR @0 LJ

Shunting with large capacitor shields from charge noise

UC Berkeley

Nonlinear inductance makes energy gaps different
Energy level pairs now addressable as qubits

Multiple levels are bound in the cosine well, like an artifical atom
The bottom two levels are the most stable qubit

Microwave drive resonant with qubit energy gap
induces single-qubit gates (controlled Rabi oscillations)




Transmon Qubit

L%: = 5,

Spectra and Eigenfunctions

10

-4 =3 -7 -1 0 1 2 i
Josephsen phase

wy/2m ~ 4-TGHz d,/2m ~ 100-300MHz

H ~ By 1+ hwg [1)(1] + A(2w, — 6,) |2)(2] ~

4

ﬁ[:ﬁ0+ﬁj:EC(2fﬁ,)2+EJ(1—cosq5)

. E
Large shunt capacitor =2 ~ 100

Ec

Cosine potential acts like an artificial atom with ~7 levels

Distinct level spacings allow targeted control of specific pairs of levels
Frequency gaps in the microwave regime

Large capacitor protects against charge noise

I A(w, — 6,) Distinct behavior from optical regime with real atoms:

| e

e Engineered chips permit ultra-strong and deep-strong coupling
regimes that are difficult to achieve with atoms

e Lower frequencies than optics make transients more relevant

e Emission can be directionally controlled down waveguides to
minimize collection loss and increase detection efficiency

G, G, =10)(0] —|1)(1| Qubit Pauliz



How do we Measure a Superconducting Qubit?

/I Ce Problem:
L C Qubit is on a chip inside a fridge near absolute zero.
e How does one "measure the energy eigenstate" of the qubit
L, Cy without causing unwanted changes to those energy states?

)
Transmon

Transmon qubit



How do we Measure a Superconducting Qubit?

/I Ce Problem:
L C Qubit is on a chip inside a fridge near absolute zero.
e How does one "measure the energy eigenstate" of the qubit
L, Cy without causing unwanted changes to those energy states?
Solution:
AT/ 't  Pump  Output Indirectly peek at the qubit energy by dispersively coupling
Transmon ‘ [ Parametric | the qubit to a strongly detuned resonator, then
% amplifier | hrobing that resonator with a microwave tone.
=G (>

The frequency shift of the leaked and amplified tone stores

information about the energy state of the qubit without
allowing energy transitions between the qubit and resonator.

‘M | This type of measurement that does not disturb energy
Transmon qubit C?‘é‘é‘é;’:j‘;’e Cavity input Stg;i'i?yesﬁt”pﬁ”‘ eigenstates in the process of measuring the energy is called a
"quantum non-demolition (QND) measurement”. 7.1

Frequency




Dispersive Readout: Quantum Filtering

A Input Pump Output Problem:
fransmon ‘ | Pg;ﬁ;};g'f The microwave probe tone must be compared to the original
Ehd 4 Iq 0 {> source, using homodyne or heterodyne measurements.
= . = These signals are noisy due to the intrinsic vacuum noise of the
X

- per unit time.

__Phase

2] X, © | source, which dominates the tiny amount of qubit information
Xr

ﬁrequen;:y 1)
Transmon qubit  Cavity phase Cavity input  State-dependent
response cavity output
Need to:
Stochastic Readout: Z e process stochastic voltage records (classical signal filtering)

e infer corresponding state evolution (quantum state filtering)

30
20

10

Bayes' Rule from probability theory and the

Born rule from quantum mechanics dictate how
the state partially collapses with information gain!

-10

-20

-30
8




Dispersive Readout: Amplification

A Input Pump  Output F Outgoing signal S further .ampllfled to
) [y | €Nhance phase difference in steady-state
Transmon Parametric - X resonator modes

o amplifier
ra \ X,
1 G oD I
- One (informational) quadrature encodes the
» X qubit state information as a displacement
e X, of the signal distribution
e S X Amplity The orthogonal (phase) quadrature encodes
F hil ' : T
_ i i ) _ photon number fluctuations inside the
Transmon qubit  Cavity phase Cavity input ~ State-dependent Phase-sensitive
response cavity output amplification resonator

Quantum-limited amplifiers (built from Josephson junctions using their nonlinear inductance):

e Josephson Parametric Amplifier (JPA): narrow-band reflected 3-wave mixer
» can operate in phase-sensitive (squeezed, above) or phase-preserving (unsqueezed) modes

o Traveling Wave Parametric Amplifier (TWPA): broad-band amplification over transmission-line propagation
» only operates in phase-preserving (unsqueezed) mode



Strong Continuous Monitoring

A Input Pump Output F Mk
Transmon ‘ Parametric AL Stronger coupling yields more
(] el X distinguishable resonator states
| g =5 o !
X, More information per unit time yields
¢ 1P more rapid projection to the stationary
of 2% 2 - o ) )
i * ————" eigenstates of the coupling
! oo, 0 X, Ar;iplify
b L T X
Frequency 1) ’ B .
Transmon qubit  Gavity phase Cavityinput  State-dependent Phase-sensitive => Strong continuous measurement
response cavity output amplification
A B , _ , Cio
2
= ﬁ ! i alll M A | ) 05\ |
E “'\' roh f‘ o AR 0.0 -
£ }E\'E' - "M’d """" v'fr‘-,“?ﬁ[ """""" 05 \ Aﬂ =y
j 'IK' \“ _2 i i ' L _1'0 — L i 7
-10 S5 11 5 10 0 5 10 15 20 0 5 10 15 20

Single shot "projective" readout

e |ntegrated signal clearly distinguishes definite qubit states
e "quantum jumps" visible (useful for syndrome detection)
arXiv:1506.08165 e Prevents normal dynamics from occurring (quantum Zeno effect)
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Weak Continuous Monitoring

A Input Pump Output F X,
[l | Amplify
Transmon Parametric \ %
amplifier
] D w X
X.:
C D
ol 2" = r_-_:tgﬁ ~
-(C‘g: "-. X‘
af - Amplify
b L ol n X
Frequency 1) ’
Transmon qubit  Cavity phase Cavity input ~ State-dependent Phase-sensitive
response cavity output amplification

Quantum state less affected per unit time

Same average information collected over an ensemble

Can "gently" monitor average information during dynamics,

State gradually collapses to an eigenstate as information accumulates.

Sl S
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arXiv:1506.08165

-10 -5

Weaker coupling yields
less distinguishable resonator states

Less information per unit time yields
slower projection to the coupling eigenstates

=> Weak continuous measurement

Following Bayes' rule, the qubit state
randomly walks as probabilities are updated
with each chunk of information in the signal

P(r|k)P(k)
(r[1)P(1) + P(r|0)P(0)

P(klr) = -

%) = V/P(0)|0) + v/ P(1)e|1)
[4) — V/P(0[r)[0) + /P(1]r)e1)

11



Steady-state Scattering Model

Koroktov, Phys. Rev. A 94, 042326 (2016)

e Transmon + Resonator + Transmission Line: JD group, Phys. Rev. A 96, 022311 (2017)
A - In[‘)ut Pump OTtput - ‘¢>r |¢>dw |¢>2dw e dr = vdt
‘D*D\ s J& o> %),
¥(2dt)) = c¢0|0)|ao(2dt)) |V Krdtag(dt)) - - -

Coherent drive yields 2 qubit-dependent
resonator coherent states : |a;), and |a;) + all)|ai(2dt))|VEdtaa(dE)) - - -

Entanglement stores f

Beam-splitter-like scattering to transmission line . .
memory of past interactions

Per unit time dt, amplitude v/ kdt of coherent field

e Tracing out the transmission line yields effective
leaks into transmission line segment of width dz

"dephasing"/"decoherence" of the qubit state

Once in tail, each dz simply propagates down the e Measuring the transmission line collapses the
line from segment to segment entangled factors and changes qubit amplitudes,

yielding stochastic dynamics
12



Steady-state Scattering Model

Koroktov, Phys. Rev. A 94, 042326 (2016)

e Transmon + Resonator + Transmission Line: JD group, Phys. Rev. A 96, 022311 (2017)
Transmon ln[‘)m Pump Ompm P tri |¢>’r |¢>da} |¢>2dw e o o dw pu— vdt
D_X'D ‘ [ amplifier
‘ l:z: GH F— O D ‘¢>q
. dag : K :
e Resonator evolution: ke Fixaon — 50 — 1€
—12 1 4el? 1
e Coherent steady states: oy, = i : : = |og|* = €]
k 1+i2x/k k2 14 (2x/k)?

e Reduced qubit-resonator state:
par = leol* [0)(0] ® |ao) (axo| + lea]* [1)(1] ® Jeu ) {eu | + coc] (Virdt u [Vkdt ag) |0)(1] ® |exg){en| + h.c.

e Measurement-dephasing rate and ac-Stark shift: (v kdt a;|vV kdt ag) = exp(—T',,dt + i wgdt)
Klog —aol® 8x°n Axn
2 k(4 (2x/k)?)’ 1+ (2x/k)?

I, = ws = kImajay =



e Transmon + Resonator + Transmission Line:

Steady-state Scattering Model

Koroktov, Phys. Rev. A 94, 042326 (2016)
JD group, Phys. Rev. A 96, 022311 (2017)

JD group, forthcoming (2025)

Input

Pump OQutput

)]

Parametric
amplifier

Transmon
D ‘
=G

i —

>

¥)r

|¢>dw |¢>2dw T

¥)q

e Post-measurement qubit-resonator state after measuring quadrature (I|:

|\Ilqr>, = Cp <Ig‘ V kdt Oé()>

L
(Io|Vrdt ag) = — exp

¢ Qubit Gaussian POVM:

M] M;,dIy

0) o) + ¢1 (Tg|VRdton) [1) o) =

= NI, N pdr =

° Qubit Measurement (Kraus) Operator:
M, 5 = (Tdt)"*[{I|V rdt o) [0)(0] + (Ig|V'rdt ) [1)(1]] =

(Mfa & i) ‘\Ijqr>

dxr = vdt

vV (r,0) U, exp(dtT,,re” 10 G,)

1 . . . .
5(]9 — v 2kdt Re(ap1€”))? + IV 2kdt Im(ag 1 €™) — ikdt Re(ap /1€ ) Im(ag1€”)
L,,dt . Iy K .
—dtTy(r — cos 0 6,)?) dr, — — 0
——exp ( (r —cos66.)%) dr T T 2y sin

14



Steady-state Scattering Model

e e . Koroktov, Phys. Rev. A 94, 042326 (2016)
e Transmon + Resonator + Transmission Line: JD group, Phys. Rev. A 96, 022311 (2017)

JD group, forthcoming (2025)

Transmon ln[‘)m i OTtpm P tri ‘¢>T’ |¢>d$ |¢>2dm o o dCE — ’Udt
amplifier
‘D*D\ c A G %)

| I

e Take-aways:
= Steady coherent-state scattering model works extremely well to predict experiment
= Depends on transmission line "boxcar" of width dz = vdt, set by the detector time resolution

Each boxcar in the transmission line train is an independent Hilbert space factor
Each boxcar must be an commuting bosonic mode supporting compatible coherent states

e Limitations:
= Assumes resonator returns to steady state faster than each boxcar time dt: no transient evolution!

Assumes qubit evolution is adiabatic on relaxation timescale: no fast qubit dynamics!
Assumes conditional coherent states: no exotic resonator states!
Good for analytic qubit formulation: no numerical simulation of resonator dynamics!

15
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Machine Learning of Quantum Trajectories

2 4 6 8
Weak measurement time (us)

» For slow Rabi drive (2Qr/k = 0.2):

RNN trajectories (red) agree
well with standard Bayesian
update trajectories (orange)

Measurement dephasing from
inefficiency balances
purification over Rabi period to
confine diffusive trajectories

Probability density

—_—
o I

w

Averaged readout

Siddiqgi group, JD, PRX 12, 031017 (2022)

RNN trajectory predictions
compare favorably to
tomographic strong readout
(for the same slow Rabi
trajectories shown on left)

Bayesian comparison inset

1.0
o Z
oY
0.5F e X
0.0F
od o
—0.5- ‘,, I"/l . . . _1 0
/" -1.0-05 00 05 1.0
’ Bayesian filter prediction
—1 OM 1 ] L

-1.0 -05 00 05 1.0

RNN prediction

RMS error

0.3 —o— Bayesian filter
—m— RNN

O
N
T

o
N
1
C;

00 | 1 | |
0.0 0.5 1.0 1.5

Rabi frequency (Q/x)

RMS error averaged over the
three qubit coordinates shown
above vs. Rabi frequency

For faster Rabi drive (2Qz/k > 1)
the simple Bayesian update filter
fails while the LSTM RNN filter
maintains consistent accuracy

16



Machine Learning of Quantum Trajectories
Siddiqgi group, JD, PRX 12, 031017 (2022)

LSTM RNN produces successive
state estimates, so directly predicts
the state increment at every pair

of adjacent time bins dp,_;
" t—

) (;;)/ = Pt = Pe-1

f T /“I el

1 t

o ~_ 7 /'«t‘ .
State update parameters can be fit
and extracted, and their dynamical
contributions analyzed independently

—

dp, =

|
/fj\
iy
=
=
+
oS
| — |
oS
Q
N
| I—
2
N—
i

deterministic evolution

+ /nH [1 K%JZ] p,dw;,

o

backaction

Hamiltonian dynamics

+Z)  mmm Model
Trajectories

|-Z)

Extracted RNN Hamiltonian
dynamics agrees well with
that expected from Rabi
control, even with faster drives

20r/Kk ~ 1.4

Measurement back action
|+Z)

WO R R RN
AN T T N N N N
L N N R N N N

L T T T T T T RN
SR RO NN
R R TR R AN
PR AR N
PR AR AL R AN NN
BB MR SN X
R AR ORI Y
NOEOHEOAE AR M X N N
R R T T T N
AR R R TR N RN
N T N N T RN
T, T T T T T T T, S
B s

-Y) [+Y)

Pl el al o P

PP PP P PP B4
PP PPl . /g

I-Z)

Extracted RNN collapse dynamics
reveals Rabi-induced physics:
1. Tilted measurement axis

2. Reduced collapse rate
17



Circuit-QED: Transmission-line Fields

Campagne-lbarcq (2017)

A Input Pump Output

ansmon ‘ ‘ [ caameic | Chy  (IN:from signal generator)
O] amplifier _l | | |
=G € >

—1 C (OUT: to amplifier and detector)
C

C, | Capacitance, Inductance per unit length Cr
]
v = i Z . l I
Vie t— Ve
} A AT

“ H=H,+H,+H.+H, +H,

A AT ~
diE:’U/ %(m)2_|_A—>( ) diI}— Z hwkaCk;_Cka
0

k=—00

), ¢(z")] = ihd(x — x')

Transmission line: local quantum fields

Local traveling waves: A= (s = ¢ ¥ z/v) = 2\1/5 (83%8) 4 Q\(/SE)) [,21#(3), 121#(3/)] — %835(8 —5)

2w [ . g the A At Measured bosonic modes
Global harmonic modes: ¢;, — \/ ~ / A7 (x) dz, k>0 [ck, Ck’] — O
by /Fior, are local wavelet packeés




Resonator-Transmission-line Coupling

Input Pump Output

Transmon Barametric C. (IN: from signal generator)
O] amplifier _" | |
5 ] e s (€ > (OUT: to amplifier and detector)

o= A B

Cout =

L C, N A N N A A
pI(x =0)
(a+al )\/ 7 (A7 () — A= (2)) _ Z
R = Wpr—- Resonator decay rate near w,
3y 7@+ a)y/F o v el — & - ) 4
Pive(a+a')(ém — & — ot + 6 ) Input-output (boundary) condition:

& = ¢(z = 0)

A —’I,(,ddt — (éln _|_ éOUt)e—ZWdt (RWA)

. = /K de
_7'\/; D ko \/ o C

Approximately white in narrow frequency band near w, 19



Effective RWA Resonator Evolution

C, (IN: from signal generator)

—

Ce

A =w, —wy
VK ae Wit = (& + Cou ) e W
¢ (t) = —i(e(t)/vE +9(1))
Vacuum fluctuations

[6(¢),97(')] = 6(t — 1)

Markovian vacuum white noise

(OUT: to amplifier and detector)

Quantum Langevin Equation (RWA):

out

—
= (A + x6.)a— g

= a—i(e(t) + vk

(%

(1))

Reflected field in transmission line:

Cout (t) = VR a(t) +i(e(t)/v/k +0(t))

)]

20



Effective Boxcar Propagator

C.,  (IN:from signal generator) Traveling reflected field:

_" (OUT: to amplifier and detector) Cout(t) = VK a(t) +i(e(t)/v/k + D(1))

Finite bandwidth detector absorbs demodulated
compact wavelet mode:

A A , - A
bout (1) = f,_ s Cous(t') T = VEAL a(t) — bin(t)

Bosonic commutator of wavelet mode must be preserved:

A A A

<Bin (t)> ~ —’i&‘(t’) %7 [bin(t)a B:fn (t)] =1 — [bout (t) b (t)] =1

Propagator for digitized evolution "boxcar" duration At:

. S L 1 . . . .
U = exp [—% H(t’)dt’] — exp [—z’At(A + x6,)ata + Ex/mAt[&T(bin — bout) — a(bl. — b )]
t—At




Effective Boxcar Displacement and Initial State

C., (IN: from signal generator)

_l (OUT: to amplifier and detector)

A

bout (t) = VEAL 6(t) — by (2)

amplitude of the resonator field!

A

1 A .
U = exp | —iAL(A + x6.)ata + 5\//<;At[dT(bin — bout) — a(b] — b

— exp | —iAHA + x6,)aTa bl (VAL ) — bows (VEAE &1

|

Propagator for "boxcar" looks like effective displacement of output mode by leaked

)

Initial coherent state for input mode is equivalent to resonator drive Hamiltonian and equivalent

choice of initial negated coherent state for the output mode:

—ie\/At/K). = exp [Bin(—z's\/m/ﬁ;) _ Igin(ia*\/At/m); 0)

—=|exp [—ZAt(&T&? + &5*)] ’+i€\/m>out

22



Return of the Steady-State Picture

Cre  (IN:-from signal generator) U = exp {—iAt(A +x6,)ata+ b (VEALE) — bous (VEAL aT)]

out

‘_ig\/m>in = exp [—ZAt(&T&? + &5*)} |+i6\/m>out

(OUT: to amplifier and detector)

Measurement of output mode post-selects a particular state (Iy|,
yielding an effective evolution Kraus operator:

Wi, = o {To| U |—ien/At ),
= out (lg| €xp {—iAt(A +x6,)ata + b (VEAL &) — bows (VEAL dT)] exp [—iAt(a'e + ae*)] [+ieV/ At/k), |

When the resonator is in a steady coherent state |oy /), this simplifies:

Mj, — exp [—iAt((A + x6.)ala +a'e + ae”)| out (Io| + i/ At/k + v kAtag1),

/ After subtraction of background reflected input pump,

Resonator Hamiltonian evolution this is the expected coherent state overlap of the steady-
state boxcar picture! 23



Non-Hermitian Hamiltonian Evolution

Phase-preserving measurement of output mode post-selects a particular coherent state: (+iec+/At/k + VKAt 7|
This choice subtracts the reflected pump and scales the readout result r to match the resonator a

M, = ou (+iey/At/k + VAt 7| U |—ier/ At /K);,
_ e—iAt(A+x&z)&T&—iAt(&Terds*)Out (+ien/At/k + VEAt 7| O (VAL @)~ bou (VRAL &) |+ie+/ At/K)

out

Expanding to linear order in At yields effectively Non-Hermitian Hamiltonian evolution:

N JAN A
M, = exp (—ZhHeff(’r')) out (V KAt r|0)

out

p A

e

Stochastic measurement backaction
(depends on random result r)

"No-jump" Lindblad resonator decay
24



dP(r|p) =

dPg(r|a) =

An Alternative Approach: Husimi Q

Tr(dP(r) p) = //dPQ rla) P(a|p) d*a,

d?r

kAL

70

exp |—kAt|r — o ]

(a|dP(r) |o)

74

The Q-representation encodes eigenvalues o for normally-ordered field-operator products.

The POVM dP(r) can be evaluated and factored into a pair of Kraus operators M, and N

d*r po(r) exp(kAtra)[1 — &At]&T& exp(kAtr*a)

kAL

s

exp(kAtr

€Xx

p(—rAL|r[") o
“a),

[ {(VEALT|0) %,

[1 — kAt a'a/2 exp(—rAtala/2)

= d®r po(r) (NM,)' (NM,),

25



Phase-preserving Measurements

Z(t) X'(t)
o 7 Y' Y X
Regime 1: 10 - =
2x/k =1 0.5 -/
ZQ/H, — 0.8 N 0.0 1
2¢/k = 0.125 =96
_.1‘[] - £
-1.0 =-0.5 0.0 0.5 1.0 0.0 0.5 1.0 -1.0 =05 0.0 0.5 1.0
I,/ =0.02 Y tQ/an X
a a(t) aplt) a;l(t) ao a
1.0 1.0
weak
measurement 05 7 —
Conditioned resonator 0.5 A 0.5 1 |
states follow weak- 1.0 | S 41 . . 1.0 —
. . -1.0 -0.5 0.0 0.5 1.0 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0
valued trajectories! ‘! oan b i

Plots courtesy of undergraduate Cory Panttaja: coded from scratch in pytho?



Phase-preserving Measurements

Regime 2:

2x/k =1

2Q/k = 0.8
2¢/k = 0.8
T,./Q=0.8
wishy-washy
measurement

Frustrated competition
between measurement
and unitary dynamics

N

im(a)

1.0

ZvsY'

0.5

0.0

-0.5

-1.0 ] T | I I
-1.0 -05 00 05 1.0
Yl
a
1.0
0.5 -
0.0 4
-0.5 A ;
-1.0 T T T
-1.0 -0.5 0.0 05 1.0

re(a)

re(a)

Z(t)

0.0

a(t) agl(t) ai(t)

0.5
tQ/4an

1.0

0.50

0.25 1+

0.00 44

—0.25 7

—0.50

—0.75 4«

0.0

-

im(a)

1.0

0.5 1

0.0

=0.5 X

-1.0

1.0

I
-1.0 =05 00 05 1.0

X

0.5

0.0

—0.5

-1.0

-1.0 =05 00 05 1.0

re(a)
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Phase-preserving Measurements

Regime 3:
2x/k =1
2Q/k = 0.8
2¢/Kk =2
Cn/Q2=5
wimpy
measurement

Tilted measurement
axis and reduced
measurement rate
(confirms machine
learning experiment)

™~

ZvsY'

1.0

0.5 4

0.0

=£0.9 9

-1.0 T

-1.0 =05 0.0
Ya

1.0 0.0 0.5 1.0
tQ/an

alt) E:'m(t} El{t}

re(a)

2 0.0 0.5 1.0
tQ/4n

b

1.0
0.5 ¢
0.0
-0.5 4
-1.0
-1.0 -0.5 0.0
do di
P
1 =
o
g °
o Tl €.
-2 T T T
-2 -1 0 1
re(a)
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Phase-preserving Measurements

Regime 4:
2x/k =1
2Q/k = 0.8
2¢/k =3
T,,/Q=11
strong
measurement

Zeno-pinned to
measurement
eigenstates, telegraphic
jump behavior

ZvsY

1.0 -
05 "/
N 0.0 + t.
.\ )
1
-0.5 - :
\ i
|
_10 I ] ) I
-10 -05 00 05 1.0
I\rl'l
d
3
2 -
1 =
o
E 7
_1 =
_2 -
—3 1 ] ]
-2 0 2
re(a)

Z(t) X'(t)

1.0

0.5

0.0 41 |
-0.5 11*
-1.0 T P_ I

0.0 0.5 1.0
tQ/4n

re(a)

a(t) aolt) ay(t)

)-

=0.5 4

-1.0

1.0

0.5

0.0
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Conclusions

e Superconducting qubits naturally use continuous
measurements, which have much more detailed
information and potential utility than binary
projective measurements

e Quantum trajectories of monitored joint qubit-
resonator states can now be readily simulated and
analyzed using a stochastic non-Hermitian
Hamiltonian

e There is very interesting behavior to explore in
transient and low-probability regimes that requires
this more comprehensive treatment of
measurement

im(a)

Thank you!

Fe

SITY

-1.0 =05 00 05 1.0
y!

a

HAPMAN | INSTITUTE FOR
E QUANTUM STUDIES

re(a)

Z(t)

t) X'(t)

0.5
tQ/4n

a(t) aolt) a:(t)

1.0

-0.5 4t

-1.0 1

T
0.0

1
0.5
tQ/4n

T
1.0

H oo

1.0

0.5

0.0

-0.5 4

=1.0 T T T
-1.0 -0.5 0.0 05 1.0
X

im(a)
o
L
J—

30



