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Superconducting Qubits

Mesoscopic coherence of collective charge motion at m scale, mK temperatureμ

EM Fields of charge motion described by Circuit QED

Anharmonic oscillator potentials treated as artificial atoms, with lowest 2 levels as qubit

Qubit levels controlled by resonant microwave field drives

Qubit levels measured via dispersive frequency-shift of coupled microwave resonator mode
3



Circuit QED Overview

Canonically conjugate dynamical variables:  

inductive (magnetic) flux:       ,       

capacitive (electric) charge:    
 

Dimensionless conjugate variables:      

[ , ] =Φ̂ Q̂ iℏ

=Φ̂ Φ0 ϕ̂ Φ =0 ℏ/2e

=Q̂ (2e) n̂

[ , ] =ϕ̂ n̂ i

Example: Harmonic Oscillator
      Useful circuit, but bad qubit:
      Can't isolate specific level pairs since
      all energy gaps are identical
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Josephson Junction:  

   Acts as nonlinear inductance   =>  anharmonic oscillator

                                    Shunting with large capacitor shields from charge noise

=ĤJ E 1 − cos ≈J ( ϕ̂) −
2
EJ

ϕ̂2 +
4!
EJ

ϕ̂4 ⋯

=ϕ̂ , E =
Φ0

Φ̂
J

LJ

Φ02

EJ EC

 Quantum Pendulum

Nonlinear inductance makes energy gaps different
Energy level pairs now addressable as qubits
 
Multiple levels are bound in the cosine well, like an artifical atom
The bottom two levels are the most stable qubit

Microwave drive resonant with qubit energy gap
induces single-qubit gates (controlled Rabi oscillations)
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Transmon Qubit

Cosine potential acts like an artificial atom with ~7 levels
Distinct level spacings allow targeted control of specific pairs of levels
Frequency gaps in the microwave regime
Large capacitor protects against charge noise

Distinct behavior from optical regime with real atoms:

Engineered chips permit ultra-strong and deep-strong coupling
regimes that are difficult to achieve with atoms
Lower frequencies than optics make transients more relevant
Emission can be directionally controlled down waveguides to
minimize collection loss and increase detection efficiency

ℏωq

ℏ(ω −q δ )q

δ /2π ∼q 100–300MHzω /2π ∼q 4–7GHz

≈Ĥ E +0 1̂ ℏω ∣1⟩⟨1∣ +q ℏ(2ω −q δ ) ∣2⟩⟨2∣ ≈q −
2
E0 1̂

2
ℏωq

σ̂z

EJ EC

Large shunt capacitor   ≈
EC

EJ 100 

=Ĥ +ĤC =ĤJ E (2 ) +C n̂ 2 E (1 −J cos ) ϕ̂

=σ̂z ∣0⟩⟨0∣ − ∣1⟩⟨1∣

qubit subspace
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How do we Measure a Superconducting Qubit?

Problem:  
Qubit is on a chip inside a fridge near absolute zero.
How does one "measure the energy eigenstate" of the qubit
without causing unwanted changes to those energy states?CJLJ

Cc
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How do we Measure a Superconducting Qubit?

Problem:  
Qubit is on a chip inside a fridge near absolute zero.
How does one "measure the energy eigenstate" of the qubit
without causing unwanted changes to those energy states?CJLJ

Cc

Solution:
Indirectly peek at the qubit energy by dispersively coupling 
the qubit to a strongly detuned resonator, then
probing that resonator with a microwave tone.
 
The frequency shift of the leaked and amplified tone stores
information about the energy state of the qubit without
allowing energy transitions between the qubit and resonator.
 
This type of measurement that does not disturb energy
eigenstates in the process of measuring the energy is called a
"quantum non-demolition (QND) measurement". 7.1



Dispersive Readout: Quantum Filtering

Need to:

process stochastic voltage records (classical signal filtering)
infer corresponding state evolution (quantum state filtering)

 
    Bayes' Rule from probability theory and the
    Born rule from quantum mechanics dictate how
           the state partially collapses with information gain!

Problem:
The microwave probe tone must be compared to the original
source, using homodyne or heterodyne measurements.

These signals are noisy due to the intrinsic vacuum noise of the
source, which dominates the tiny amount of qubit information
per unit time.
 

8



Dispersive Readout: Amplification

Quantum-limited amplifiers (built from Josephson junctions using their nonlinear inductance):

Josephson Parametric Amplifier (JPA): narrow-band reflected 3-wave mixer
can operate in phase-sensitive (squeezed, above) or phase-preserving (unsqueezed) modes
 

Traveling Wave Parametric Amplifier (TWPA): broad-band amplification over transmission-line propagation
only operates in phase-preserving (unsqueezed) mode

Outgoing signal is further amplified to
enhance phase difference in steady-state
resonator modes
 
One (informational) quadrature encodes the
qubit state information as a displacement
of the signal distribution 
 
The orthogonal (phase) quadrature encodes
photon number fluctuations inside the
resonator
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Single shot "projective" readout 

Integrated signal clearly distinguishes definite qubit states
"quantum jumps" visible (useful for syndrome detection)
Prevents normal dynamics from occurring (quantum Zeno effect)

Strong Continuous Monitoring

Stronger coupling yields more
distinguishable resonator states
 
More information per unit time yields
more rapid projection to the stationary
eigenstates of the coupling
 
=> Strong continuous measurement
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Quantum state less affected per unit time
Same average information collected over an ensemble
Can "gently" monitor average information during dynamics,
State gradually collapses to an eigenstate as information accumulates.

Weak Continuous Monitoring

Weaker coupling yields
less distinguishable resonator states
 
Less information per unit time yields
slower projection to the coupling eigenstates
 
=> Weak continuous measurement
 
Following Bayes' rule, the qubit state
randomly walks as probabilities are updated
with each chunk of information in the signal

P (k∣r) =
P (r∣1)P (1) + P (r∣0)P (0)

P (r∣k)P (k)

∣ψ⟩ = ∣0⟩ +P (0) e ∣1⟩P (1) iϕ

∣ψ⟩
r

∣0⟩ +P (0∣r) e ∣1⟩P (1∣r) iϕ
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Steady-state Scattering Model

Transmon + Resonator + Transmission Line:
Koroktov, Phys. Rev. A 94, 042326 (2016)
JD group, Phys. Rev. A 96, 022311 (2017)

⋯

∣ψ⟩q

∣ψ⟩r ∣ψ⟩dx ∣ψ⟩2dx dx = vdt

Coherent drive yields 2 qubit-dependent
resonator coherent states : , and 
 
Beam-splitter-like scattering to transmission line
 
Per unit time , amplitude  of coherent field
leaks into transmission line segment of width 
 
Once in tail, each  simply propagates down the
line from segment to segment

∣α ⟩0 ∣α ⟩1

dt κdt

dx

dx

∣Ψ(2dt)⟩ =
+

c ∣0⟩∣α (2dt)⟩∣ α (dt)⟩⋯0 0 κdt 0

c ∣1⟩∣α (2dt)⟩∣ α (dt)⟩⋯1 1 κdt 1

Entanglement stores
memory of past interactions

Tracing out the transmission line yields effective
"dephasing"/"decoherence" of the qubit state
 
Measuring the transmission line collapses the
entangled factors and changes qubit amplitudes,
yielding stochastic dynamics

12



Steady-state Scattering Model

Transmon + Resonator + Transmission Line:
Koroktov, Phys. Rev. A 94, 042326 (2016)
JD group, Phys. Rev. A 96, 022311 (2017)

⋯

∣ψ⟩q

∣ψ⟩r ∣ψ⟩dx ∣ψ⟩2dx dx = vdt

Resonator evolution: 

 

Coherent steady states: 

 
Reduced qubit-resonator state:

 
Measurement-dephasing rate and ac-Stark shift: 

=
dt

dα0/1 ∓iχα −0/1 α −
2
κ

0/1 iε

α =0/1 , =
κ

−i2ε
1 ± i2χ/κ

1
n̄ ∣α ∣ =0/1

2

κ2
4∣ε∣2

1 + (2χ/κ)2
1

=ρ̂qr ∣c ∣ ∣0⟩⟨0∣ ⊗0
2 ∣α ⟩⟨α ∣ +0 0 ∣c ∣ ∣1⟩⟨1∣ ⊗1

2 ∣α ⟩⟨α ∣ +1 1 c c ⟨ α ∣ α ⟩ ∣0⟩⟨1∣ ⊗0 1
∗ κdt 1 κdt 0 ∣α ⟩⟨α ∣ +0 1 h.c.

⟨ α ∣ α ⟩ =κdt 1 κdt 0 exp(−Γ dt+m i ω dt)S

Γ =m =
2

κ∣α − α ∣1 0
2

, ω =
κ(1 + (2χ/κ) )2

8χ2n̄
S κ Imα α =1

∗
0 1 + (2χ/κ)2

4χn̄

13



Steady-state Scattering Model

Transmon + Resonator + Transmission Line:
Koroktov, Phys. Rev. A 94, 042326 (2016)
JD group, Phys. Rev. A 96, 022311 (2017)

JD group, forthcoming (2025)

⋯

∣ψ⟩q

∣ψ⟩r ∣ψ⟩dx ∣ψ⟩2dx dx = vdt

Post-measurement qubit-resonator state after measuring quadrature :

 
Qubit Gaussian POVM:

 
Qubit Measurement (Kraus) Operator:

⟨I ∣θ
∣Ψ ⟩ =qr

′
c ⟨I ∣ α ⟩ ∣0⟩ ∣α ⟩ +0 θ κdt 0 0 c ⟨I ∣ α ⟩ ∣1⟩ ∣α ⟩ =1 θ κdt 1 1 ( ⊗M̂Iθ ) ∣Ψ ⟩1̂ qr

  ⟨I ∣ α ⟩ =θ κdt 0/1 exp − (I − Re(α e )) + I Im(α e ) − iκdtRe(α e )Im(α e )
π

1 [
2
1

θ 2κdt 0/1
iθ 2

θ 2κdt 0/1
iθ

0/1
iθ

0/1
iθ ]

dI =M̂Iθ

†
M̂Iθ θ dr =M̂r,θ

†
M̂r,θ exp −dtΓ (r − cos θ ) dr, r =

π

Γ dtm ( m σ̂z
2) −

Γ dtm

Iθ sin θ
2χ
κ

=M̂r,θ (Γdt) [⟨I ∣ α ⟩ ∣0⟩⟨0∣ +1/4
θ κdt 0 ⟨I ∣ α ⟩ ∣1⟩⟨1∣] =θ κdt 1 exp(dtΓ re )(r, θ)p̄ Ûθ m

−iθ σ̂z
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Steady-state Scattering Model

Transmon + Resonator + Transmission Line:
Koroktov, Phys. Rev. A 94, 042326 (2016)
JD group, Phys. Rev. A 96, 022311 (2017)

JD group, forthcoming (2025)

⋯

∣ψ⟩q

∣ψ⟩r ∣ψ⟩dx ∣ψ⟩2dx dx = vdt

Take-aways:
Steady coherent-state scattering model works extremely well to predict experiment
Depends on transmission line "boxcar" of width , set by the detector time resolution
Each boxcar in the transmission line train is an independent Hilbert space factor
Each boxcar must be an commuting bosonic mode supporting compatible coherent states
 

Limitations:
Assumes resonator returns to steady state faster than each boxcar time : no transient evolution!
Assumes qubit evolution is adiabatic on relaxation timescale: no fast qubit dynamics!
Assumes conditional coherent states: no exotic resonator states!
Good for analytic qubit formulation: no numerical simulation of resonator dynamics!

dx = vdt

dt
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Machine Learning of Quantum Trajectories
Siddiqi group, JD, PRX 12, 031017 (2022)
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Machine Learning of Quantum Trajectories
Siddiqi group, JD, PRX 12, 031017 (2022)
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Circuit-QED: Transmission-line Fields

CJ

LJ

Cc

=Ĥ +Ĥq +Ĥr +Ĥc +Ĥt Ĥrt

=Ĥt + dx =∫
0

λ [
2c
(x)q̂ 2

2l
(∂ (x))xϕ̂

2 ] v ( (x) +∫
0

λ

Â← 2 (x) )dx =Â→ 2 ℏω
k=−∞

∑
∞

k 2
+ĉk

†
ĉk ĉk ĉk

†

Crt

(OUT: to amplifier and detector)

(IN: from signal generator)
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Campagne-Ibarcq (2017)

[ (x), (x )] =ϕ̂ q̂ ′ iℏδ(x− x )′

[ (s), (s )] =Â⇌ Â⇌ ′ ∂ δ(s−2
iℏ

s s )′

[ , ] =ĉk ĉk′
† δkk′

(s =Â⇌ t∓ x/v) = ±
2 v

1 (
l

∂ (s)sϕ̂

c

(s)q̂ )

v =
lc

1

=ĉk (x) dx, k >
λ

2v ∫
0

λ

Â→
ℏωk

e−ikx
0

c, l Capacitance, Inductance per unit length

Z =t c
l

Transmission line: local quantum fields

Cr

Local traveling waves:

Global harmonic modes:
Measured bosonic modes
are local wavelet packets



=Ĥrt (x =Φ̂Î 0)

= ( +2
ℏZr â ) ( (t) −â†

Zt

1 Â→ (t))Â←

≡ i ( +2
ℏ κ â )( −â† ĉin −ĉin

† +ĉout )ĉout
†

κ ≡ ωr
Zt

Zr

≡ĉin −i
λ
v ∑k=0

∞
ωr

ωk ĉ−k

≡ĉout −i
λ
v ∑k=0

∞
ωr

ωk ĉk

Resonator decay rate near ωr

Input-output (boundary) condition:

=Φ̂ (x =ϕ̂ 0)

⇒ e =κ â −iω td ( +ĉin )eĉout
−iω td

Resonator-Transmission-line Coupling

CJ

LJ

Cc
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=Ĥ +Ĥq +Ĥr +Ĥc +Ĥt Ĥrt

Crt

(OUT: to amplifier and detector)

(IN: from signal generator)

Cr

= ( +2
ℏ

Zt

Zr â ) ( +â†
λ
v ∑k=0

∞
ωk ĉ−k −ĉ−k

† −ĉk )ĉk
†

Approximately white in narrow frequency band near ωr

(RWA)



≈Ĥ ℏ(Δ + χ ) +σ̂z â
†â i [ ( −2

ℏ κ â† ĉin ) −ĉout ( −â ĉin
† )]ĉout

†

e =κ â −iω td ( +ĉin )eĉout
−iω td

Effective RWA Resonator Evolution

CJ

LJ

Cc

Crt

(OUT: to amplifier and detector)
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(IN: from signal generator)

Cr

=
dt

dâ
−i(Δ + χ ) +σ̂z â ( −

2
κ
ĉin )ĉout

(t) ≈ĉin −i(ε(t)/ +κ (t)) v̂

Δ = ω −r ωd

=
dt

dâ
−i(Δ + χ ) −σ̂z â −

2
κ
â i(ε(t) + (t))κv̂

Quantum Langevin Equation (RWA):

Vacuum fluctuations

(t) =ĉout (t) +κ â i(ε(t)/ +κ (t))v̂

Reflected field in transmission line:

[ (t), (t )] =v̂ v̂† ′ δ(t− t )′

Markovian vacuum white noise



Effective Boxcar Propagator

(t) =ĉout (t) +κ â i(ε(t)/ +κ (t))v̂

Traveling reflected field:

Finite bandwidth detector absorbs demodulated
compact wavelet mode:

(t) =b̂out (t ) ≈∫
t−Δt
t

ĉout
′

Δt
dt′ (t) −κΔt â (t)b̂in

⟨ (t)⟩ ≈b̂in −iε(t ) , [ (t), (t)] =′
κ
Δt b̂in b̂in

† 1 ⟹ [ (t), (t)] =b̂out b̂out
† 1

Bosonic commutator of wavelet mode must be preserved:

CJ

LJ

Cc
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Crt

(OUT: to amplifier and detector)

(IN: from signal generator)

Cr

=Û exp − (t )dt =[
ℏ
i ∫

t−Δt

t

Ĥ ′ ′] exp −iΔt(Δ + χ ) + [ ( − ) − ( − )][ σ̂z â
†â

2
1

κΔt â† b̂in b̂out â b̂in
†

b̂out
† ]

Propagator for digitized evolution "boxcar" duration :Δt



Effective Boxcar Displacement and Initial State

(t) =b̂out (t) −κΔt â (t)b̂in

CJ

LJ

Cc

Crt

(OUT: to amplifier and detector)

(IN: from signal generator)

Cr
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Û = exp −iΔt(Δ + χ ) + [ ( − ) − ( − )][ σ̂z â
†â

2
1

κΔt â† b̂in b̂out â b̂in
†

b̂out
† ]

= exp −iΔt(Δ + χ ) + ( ) − ( )[ σ̂z â
†â b̂out

†
κΔt â b̂out κΔt â† ]

Propagator for "boxcar" looks like effective displacement of output mode by leaked
amplitude of the resonator field!

∣−iε ⟩Δt/κ in = exp (−iε ) − (iε ) ∣0⟩[b̂in† Δt/κ b̂in
∗ Δt/κ ]

= exp −iΔt( ε+ ε ) ∣+iε ⟩[ â† â ∗ ] Δt/κ out

Initial coherent state for input mode is equivalent to resonator drive Hamiltonian and equivalent
choice of initial negated coherent state for the output mode:



Return of the Steady-State Picture

CJ

LJ

Cc

Crt

(OUT: to amplifier and detector)

(IN: from signal generator)

Cr

Û = exp −iΔt(Δ + χ ) + ( ) − ( )[ σ̂z â
†â b̂out

†
κΔt â b̂out κΔt â† ]
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∣−iε ⟩Δt/κ in = exp −iΔt( ε+ ε ) ∣+iε ⟩[ â† â ∗ ] Δt/κ out

When the resonator is in a steady coherent state  , this simplifies:∣α ⟩0/1

Measurement of output mode post-selects a particular state ,

yielding an effective evolution Kraus operator:

⟨I ∣θ

M̂Iθ = ⟨I ∣ ∣−iε ⟩out θ Û Δt/κ in

= ⟨I ∣ exp −iΔt(Δ + χ ) + ( ) − ( ) exp −iΔt( ε+ ε ) ∣+iε ⟩out θ [ σ̂z â
† â b̂out

†
κΔt â b̂out κΔt â† ] [ â† â ∗ ] Δt/κ out

M̂Iθ → exp −iΔt((Δ + χ ) + ε+ ε ) ⟨I ∣ + iε + α ⟩[ σ̂z â
† â â† â ∗ ] out θ Δt/κ κΔt 0/1 out

After subtraction of background reflected input pump,
this is the expected coherent state overlap of the steady-
state boxcar picture!

Resonator Hamiltonian evolution



Non-Hermitian Hamiltonian Evolution

Expanding to linear order in  yields effectively Non-Hermitian Hamiltonian evolution:Δt

Phase-preserving measurement of output mode post-selects a particular coherent state: 

This choice subtracts the reflected pump and scales the readout result  to match the resonator 

⟨+iε + r∣Δt/κ κΔt

r â

M̂r = ⟨+iε + r∣ ∣−iε ⟩out Δt/κ κΔt Û Δt/κ in

= e ⟨+iε + r∣ e ∣+iε ⟩−iΔt(Δ+χ ) −iΔt( ε+ ε )σ̂z â
† â â† â ∗

out Δt/κ κΔt ( )− ( )b̂out
† κΔt â b̂out κΔt â† Δt/κ out

M̂r = exp − (r) ⟨ r∣0⟩(
ℏ
iΔt

Ĥeff ) out κΔt out

(r)Ĥeff = ℏ(Δ + χ ) + ℏ( ε+ ε ) + iℏκr − iℏκ /2σ̂z â
†â â† â ∗ ∗ â â†â

Stochastic measurement backaction
(depends on random result )r "No-jump" Lindblad resonator decay
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An Alternative Approach: Husimi Q

dP (r∣ )ρ̂

dP (r∣α)Q

= Tr(d (r) ) = dP (r∣α)P (α∣ ) d α,P̂ ρ̂ ∬ Q ρ̂ 2

= exp −κΔt∣r − α∣ =
π

d r2

π

κΔt
[ 2]

π

⟨α∣ d (r) ∣α⟩P̂

The -representation encodes eigenvalues  for normally-ordered field-operator products.

The POVM  can be evaluated and factored into a pair of Kraus operators   and 
 

Q α

d (r)P̂ M̂r N̂

d (r)P̂

p (r)0

M̂r

N̂

≡ d r p (r) exp(κΔt r )[1 − κΔt] exp(κΔt r ) ≡ d r p (r) ( ) ( ),2
0 â† â† â ∗â 2

0 N̂M̂r
† N̂M̂r

= exp(−κΔt ∣r∣ ) ∝ ∣ ⟨ r∣0⟩ ∣ ,
π

κΔt 2 κΔt 2

≡ exp(κΔt r ),∗â

≡ [1 − κΔt] ≈ exp(−κΔt /2)/2â† â â†â
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Phase-preserving Measurements

Plots courtesy of undergraduate Cory Panttaja: coded from scratch in python

Regime 1:

 

 
weak
measurement
 
Conditioned resonator
states follow weak-
valued trajectories!

2χ/κ = 1

2Ω/κ = 0.8

2ε/κ = 0.125

Γ /Ω =m 0.02
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Phase-preserving Measurements

Regime 2:

 

 
wishy-washy
measurement
 
Frustrated competition
between measurement
and unitary dynamics

2χ/κ = 1

2Ω/κ = 0.8

2ε/κ = 0.8

Γ /Ω =m 0.8
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Phase-preserving Measurements

Regime 3:

 

 
wimpy
measurement
 
Tilted measurement
axis and reduced
measurement rate
(confirms machine
learning experiment)

2χ/κ = 1

2Ω/κ = 0.8

2ε/κ = 2

Γ /Ω =m 5
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Phase-preserving Measurements

Regime 4:

 

 
strong
measurement
 
Zeno-pinned to
measurement
eigenstates, telegraphic
jump behavior

2χ/κ = 1

2Ω/κ = 0.8

2ε/κ = 3

Γ /Ω =m 11
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Conclusions
Superconducting qubits naturally use continuous
measurements, which have much more detailed
information and potential utility than binary
projective measurements
 
Quantum trajectories of monitored joint qubit-
resonator states can now be readily simulated and
analyzed using a stochastic non-Hermitian
Hamiltonian
 
There is very interesting behavior to explore in
transient and low-probability regimes that requires
this more comprehensive treatment of
measurement

Thank you!
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