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Abstract

We introduce a predictability quantifier rooted in geometry and directly tied to quasiprobability-
based coherence. For a state ρ and a projective measurement {Πa} , we define

P (ρ, {Πa}) = D2
B(∆a(ρ) ∥I/d ),

the squared Bures distance between the dephased state ∆a(ρ) (i.e. the classical outcome
distribution in the chosen basis) and the maximally mixed state I/d. This yields a closed
form P that depends only on the diagonal probabilities pa = Tr(ρΠa) and satisfies the
desiderata for a resource-like “which-path certainty”: continuity in pa, convexity, invari-
ance under basis permutations, monotone decrease under depolarisation, and invariance
under the decoherence channel that erases off-diagonals. Moreover, P admits an entropic
representation via the Tsallis entropy at α = 1

2 ,

P (ρ,Πa)

Pmax
= 1 −

S1/2(∆a(ρ))

S1/2(I/d)
,

linking operational predictability to measurement uncertainty.
Building on Kirkwood–Dirac (KD) quasiprobability, we take the pure-state nonclassical

KD coherence [1]

CNCLKD

(
|ψ⟩, {Πa}

)
= −1 +

∑
a

√
|⟨a|ψ⟩|2,

show that it is the complement of the normalised P for pure states, and extend it to mixed
states by a convex-roof construction [2],

C(ρ; Π) := inf
{pk,|ψk⟩}

∑
k

pk C
NCl
KD

(
|ψk⟩, {Πa}

)
s.t. ρ =

∑
k

pk |ψk⟩⟨ψk|.

The resulting C(ρ; Π) is a proper coherence monotone: it is faithful (maximal on the
uniformly coherent manifold, zero on incoherent states), convex, non-increasing under
decoherence and partial trace, covariant under unitaries, and invariant under unitaries
commuting with the measured observable and under basis permutations. This furnishes a
KD-anchored and geometrically interpretable coherence that pairs naturally with P .

From these constructions we derive (i) a wave–particle duality inequality [3, 4]

C(ρ, {Πa})
Cmax

+
P (ρ, {Πa})
Pmax

≤ 1,



and (ii) using the thermodynamic bound on Tsallis-12 entropy production [5] (for equilib-
rium I/d), a triality equality [6]

P̃ (ρ, {Πa})︸ ︷︷ ︸
classical

+ C̃(ρ, {Πa})︸ ︷︷ ︸
quantum

+ S̃1/2(ρ)︸ ︷︷ ︸
mixedness

= 1,

which cleanly partitions informational resources into classical predictability, quantum co-
herence, and entropy-like mixedness. We also give an operational interpretation: in a
“quantum guessing game with posterior information,” C quantifies the classically irre-
ducible unpredictability—the part that remains even when an adversary learns the state’s
pure-state decomposition [7].

For qubits, we provide numerical experiments corroborating the theory, including
bounds via Fuchs–van de Graaf inequalities and relations to purity. The framework ties
phase-space/quasiprobability notions (KD) to geometric distances (Bures) and thermo-
dynamic constraints (Tsallis) in a unified, experimentally friendly way, with potential
applications to metrology, QRNG, and resource accounting in open-system control.
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