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In classical statistics and probability theory, statistical functions such as the moment-generating function, charac-
teristic function, cumulant-generating function, and second characteristic function play a central role in characterizing
the statistical properties of a system under consideration [1–4]. The moment-generating function, for instance, pro-
vides a compact way to encode all the moments of a probability distribution, while the characteristic function, being
its Fourier transform, is always well-defined, even when the moments do not exist. Their logarithmic counterparts,
the cumulant-generating and second characteristic functions, are particularly useful for analyzing the independence
and additivity of random variables. These tools are indispensable not only in statistics but also in physics, finding
applications in statistical mechanics for calculating partition functions and correlation functions, as well as in quan-
tum field theory where generating functionals provide a complete description of correlation functions in quantum field
theory.

Despite the profound success of these concepts in classical and quantum field theory, a consistent and unified frame-
work for such statistical functions in the context of quantum mechanics has been lacking [5–13]. Quantum mechanics
introduces two fundamental features that complicate this analogy: the noncommutative nature of observables and the
intrinsic probabilistic nature of measurement outcomes. While the expectation value of an observable is a well-defined
statistical quantity, a systematic framework that generates all higher-order moments and cumulants in a manner
analogous to their classical counterparts remains to be fully developed.

This work aims to fill this gap by introducing a set of quantum statistical functions for quantum systems. Our
approach departs from a direct analogy with classical probability distributions and instead leverages the concept of
state purification, a unique feature of quantum mechanics where a mixed state is represented as a pure state on an
enlarged Hilbert space [14]. By defining our statistical functions as expectation values of operator functions with
respect to this purified state, we establish a robust and comprehensive framework.

Our main contributions are threefold. First, we define a set of four quantum statistical functions: the quantum
moment-generating function, characteristic function, cumulant-generating function, and second characteristic func-
tion. We demonstrate that these functions, when differentiated, correctly reproduce standard quantum statistical
quantities such as expectation values, variance, and covariance. Second, we show that the multi-variable versions
of these functions, when defined with specific operator orderings, are intimately connected to well-known quasiprob-
ability distributions [15–18] like the Kirkwood-Dirac distribution [19–21], Margenau-Hill distribution [22], Wigner
distribution [23], and so on. This link highlights the role of noncommutativity of operators in shaping the statisti-
cal properties of quantum systems. Third, and perhaps most significantly, we extend our framework to include the
concept of pre- and post-selection, a non-classical operation paradigm. By defining conditional quantum statistical
functions for a pre- and post-selected system, we show that they naturally yield weak values [24, 25] and weak variance
[6, 26, 27] upon differentiation.
This work provides a unified mathematical structure that not only reproduces fundamental statistical measures of

quantum mechanics but also elegantly incorporates the non-classical aspects of quasiprobabilities. The framework
presented here lays the foundation for a deeper understanding of quantum statistics and could inspire new experimental
protocols for characterizing quantum states and processes.
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H. Halvorson, M. Rédei, Y. Kitajima, and F. Buscemi (Springer Singapore, Singapore, 2018) pp. 195–228.
[17] S. Umekawa, J. Lee, and N. Hatano, arXiv:2309.06836 (2023).
[18] C. Ferrie, Rep. Prog. Phys. 74, 116001 (2011).
[19] J. G. Kirkwood, Phys. Rev. 44, 31 (1933).
[20] P. A. M. Dirac, Rev. Mod. Phys. 17, 195 (1945).
[21] D. R. M. Arvidsson-Shukur, W. F. Braasch Jr, S. De Bivre, J. Dressel, A. N. Jordan, C. Langrenez, M. Lostaglio, J. S.

Lundeen, and N. Y. Halpern, New J. Phys.s 26, 121201 (2024).
[22] H. Margenau and R. N. Hill, Prog. Theor. Phys. 26, 722 (1961).
[23] E. P. Wigner, Phys. Rev. 40, 749 (1932).
[24] Y. Aharonov, D. Z. Albert, and L. Vaidman, Phys. Rev. Lett. 60, 1351 (1988).
[25] J. Dressel, M. Malik, F. M. Miatto, A. N. Jordan, and R. W. Boyd, Rev. Mod. Phys. 86, 307 (2014).
[26] K. Ogawa, N. Abe, H. Kobayashi, and A. Tomita, Phys. Rev. Res. 3, 033077 (2021).
[27] T. Matsushita and H. F. Hofmann, Phys. Rev. A 109, 022224 (2024).

https://doi.org/10.1103/PhysRevLett.89.283601
https://doi.org/10.1103/PhysRevA.91.032116
https://doi.org/10.1103/PhysRevA.95.012120
https://doi.org/10.1103/PhysRevA.95.053825
https://doi.org/10.22331/q-2017-10-12-32
https://doi.org/10.1103/PhysRevA.97.042105
https://doi.org/10.1103/PhysRevA.108.032218
https://doi.org/10.1103/PhysRevLett.133.070405
https://doi.org/10.48550/arXiv.2506.1018
https://doi.org/10.48550/arXiv.1404.3388
https://doi.org/10.1093/ptep/ptx024
https://doi.org/https://doi.org/10.1007/978-981-13-2487-1_9
https://doi.org/10.48550/arXiv.2309.06836
https://doi.org/10.1088/0034-4885/74/11/116001
https://doi.org/10.1103/PhysRev.44.31
https://doi.org/10.1103/RevModPhys.17.195
https://doi.org/10.1088/1367-2630/ada05d
https://doi.org/10.1143/PTP.26.722
https://doi.org/10.1103/PhysRev.40.749
https://doi.org/10.1103/PhysRevLett.60.1351
https://doi.org/10.1103/RevModPhys.86.307
https://doi.org/10.1103/PhysRevResearch.3.033077
https://doi.org/10.1103/PhysRevA.109.022224

	Quantum statistical functions
	References


