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Despite its striking empirical success, the ontology im-
plied by quantum theory remains fundamentally unclear.
Foundational investigations have nevertheless yielded re-
markable approaches for understanding and applying the
theory—even if falling short of their original interpreta-
tional aims. This flash talk reports structural results at the
intersection of two such approaches: quasiprobability rep-
resentations and the general probabilistic theories frame-
work.

General probabilistic theories (GPTs) [1] originate from
the quest to identify what distinguishes quantum theory
within a broader landscape of possible physical theories.
This framework has elucidated not only aspects of quan-
tum theory, but also properties of any theory that might
supersede it. Moreover, it has also clarified that character-
istics sometimes considered uniquely quantum are present
in various other classes of theories—a short list includes
no-cloning [2], no-broadcasting [3], entanglement [4], and
teleportation [2]. From this point of view, quantum theory
is merely one in a vast landscape of theories.

A seemingly unrelated topic is that of quasiprobability
distributions, which originate from Eugine Wigner’s semi-
nal attempt to represent quantum theory using probabil-
ity distributions over phase space [5]. In this approach,
quantum-mechanical processes are mapped to processes on
a phase-space (or more generally, any classical state space).
Because the predictions of any quantum experiment can be
fully reproduced in such a manner, we refer to this mapping
as a representation of quantum theory.

If such a representation requires violations of standard
axioms of probability [6]—such as allowing negative or non-
real values in the distributions u,—we call it a quasiproba-
bility representation, otherwise we call it a probability rep-
resentation. Formally, such representations can be char-
acterized as frame representations [7—10]. Various repre-
sentations of quantum theory are known, and most com-
monly one considers real-valued representations—i.e., those
in which the quasiprobabilities are real-valued functions
that may be negative.

Unsurprisingly, quantum theory is not the only theory
for which one can meaningfully define a quasiprobability
representation. In particular, this notion extends naturally
to GPTs. Schmid et al. [11], building on Refs. [12-14],
developed a framework for real-valued finite dimensional
quasiprobability representations that not only captures the
structural features of GPTs but also emphasizes their com-
positional character (see Fig. 1). Most GPTs admit of a
diagrammatic representation with an associated composi-
tional calculus, typically formalized as a category [15], in
which physical systems and processes are represented by
diagrams. A quasiprobability representation in this setting
is then a map that takes diagrams from a GPT to corre-

FIG. 1.

Quasiprobability representation of a general
probabilistic theory (GPT). (Left) In a diagrammatic per-
spective, a physical theory defines a compositional structure for
generic systems (denoted A, B, ...) and processes between them
(denoted s,e,T,...). (Right) A quasiprobability representation
is a map M that assigns to each system A a set of relevant vari-
ables A4 taking values in K € {R,C}, and to each process, a
quasistochastic element—such as a quasiprobability distribution
Ws, a response function &., or a quasisubstochastic matrix I'r.

sponding diagrams in a target theory defined in terms of
quasistochastic matrices.

Formally, this diagrammatic view captures the composi-
tional structure of a GPT in the language of process theo-
ries—mathematical structures closely related to symmetric
monoidal categories. The target theory of a quasiproba-
bility representation is described using quasisubstochastic
matrices: systems correspond to real vector spaces, pro-
cesses to matrices, states to unnormalized quasiprobability
vectors, and so on. From this perspective, such represen-
tations correspond to semi-functors, as they translate the
process-theoretic structure of one theory into that of an-
other while preserving its compositional connectivity.

In Schmid et al. [11], some of us proved a structure the-
orem for all diagram-preserving maps—a subclass of semi-
functorial maps that, additionally, preserve identity pro-
cesses, hence corresponding to what is known as a func-
tor. Their framework, together with the structure theo-
rems proved there, can be viewed as a category-theoretic
extension of the linear-algebraic program that classifies lin-
ear preservers [16]. In this program, one studies linear
operators on a structured matrix space O C Matk(n,m)
and seeks all maps T : O — O that preserve the set (i.e.
T(O) = O, or in the weaker form T'(O) C O).

Most results in this research program show that T typi-
cally has the form

X+ AXBor X — AXTB, (1)

for A, B € O. The structure theorem of Ref. [11] states that
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FIG. 2. Illustration of the main results. Any linearity-
preserving, empirically adequate, complex-valued quasiproba-
bility representation Q of a generic transformation T': A — B
in a tomographically local, finite-dimensional GPT can be writ-
ten as Q(T) = x5 o C(T) o x3', provided Q is functorial
and maps the GPT to finite-dimensional spaces. If Q is only
semi-functorial, then Q(ida) is an idempotent and Q(7T) =
xB o C(T) o X,Lf1 0 Q(ida), where x4 is injective and xa de-
notes its invertible surjective corestriction. In these formulas, C
denotes the complexification functor.

any real-valued finite dimensional quasiprobability functo-
rial representation M which preserves a few structures rel-
evant for the GPT is equivalently implemented by system-
wise maps A — x4 : A = M(A) and acts by conjugation
on transformations:

M(T) =xpoTox," (2)

for every transformation 7': A — B in the GPT.

Recently, a particularly important class of complex-
valued quasiprobability representations has attracted sig-
nificant attention: the Kirkwood-Dirac (KD) quasiproba-
bility distributions. First introduced by Kirkwood in the
1930s [17] and later rediscovered by Dirac [18], these distri-
butions have undergone a revival of interest [19-22]. Most
relevantly for our discussion, they have been shown to lift
to faithful complex-valued diagram-preserving representa-
tions of all of quantum theory [23].

Kirkwood-Dirac representations—and more generally,
complex-valued quasiprobability distributions—Iie outside
the scope of the formalism and structure theorem of
Ref. [11]. This motivates the need for a broader under-
standing of the structural features of complex-valued rep-
resentations of quantum theory in particular, and more
broadly of any GPTs. The present flashtalk reports on
work which takes a step in that direction. Our main contri-
bution is to establish a structure theorem showing that any
complex-valued quasiprobability representation of a finite-
dimensional, tomographically local GPT has a simple and
constrained mathematical form.

Our results are illustrated in Fig. 2 and are obtained

from the following sequence of ideas. Since we consider
complex-valued representations, we begin by describing in
detail the complexification of real vector spaces, and linear
maps between them. We then show how complexification
can be viewed as a category-theoretic construction, prov-
ing that it yields a strong monoidal functor. Equipped
with the complexification functor, we then prove a struc-
ture theorem for semi-functors from tomographically local
GPTs to the process theory of complexr vector spaces. We
prove a structure theorem for complex-valued quasiproba-
bility representations (which in our formalism are a sub-
set of all possible semi-functors) of tomographically local
GPTs, extending the results from Ref. [11]. Note that un-
like in Ref. [11], our results apply equally as well to both
finite and infinite dimensional representations.
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