Kirkwood-Dirac Nonpositivity is a Necessary Resource for Quantum Computing

Jonathan J. Thio, ¹ Songqinghao (Peter) Yang, ^{1, 2} Nicole Yunger Halpern, ^{3, 4}
Stephan De Bièvre, ⁵ Crispin H. W. Barnes, ¹ and David R. M. Arvidsson-Shukur²

¹ Cavendish Lab., Department of Physics, Univ. of Cambridge, Cambridge CB3 0HE, UK

² Hitachi Cambridge Lab., J.J. Thomson Avenue, Cambridge CB3 0HE, UK

³ Joint Center for Quantum Information and Computer Science,

NIST and University of Maryland, College Park, Maryland 20742, USA

⁴ Institute for Physical Science and Technology, University of Maryland, College Park, Maryland 20742, USA

⁵ Univ. Lille, CNRS, Inria, UMR 8524, Laboratoire Paul Painlevé, F-59000 Lille, France

(Dated: September 4, 2025)

Classical computers can efficiently simulate quantum-computational models with restricted input states. The identification of such states can sharpen the boundary between quantum and classical computations. Previous works describe the efficiently classically simulable states of odd-dimensional systems. Here, we further our understanding of systems of qubits. We do so by casting a real-quantum-bit model of computation in terms of a Kirkwood-Dirac (KD) quasiprobability distribution. In this talk, we show that algorithms, throughout which this KD distribution is positive, can be simulated efficiently on a classical computer. Furthermore, we show that KD nonpositivity is a resource monotone under a model of quantum computation. Thus, we establish KD nonpositivity as a necessary resource for computational quantum advantage.