Passive two-photon dissipation for bit-flip error correction of a cat code

Benjamin Huard

Bosonic codes offer a resource-efficient method to quantum error correction. Of particular interest, autonomous correction was successfully demonstrated for cat codes, where the logical $|0\rangle$ and $|1\rangle$ states are coherent states of opposite amplitudes $|\alpha\rangle$ and $|-\alpha\rangle$ in a superconducting resonator with single-photon loss rates $\kappa 1$ as low as possible. They correct bit-flip errors by either using the non-linearity of the oscillator or parametrically pumping couplers to produce two-photon dissipation at a rate $\kappa 2$. The bit-flip time increases exponentially with $|\alpha|^2$ while the phase-flip rate only increases linearly with $|\alpha|^2$. In this talk, we discuss superconducting circuits designed to correct for bit-flip errors of cat codes. We experimentally demonstrate unprecedented ratios $\kappa 2/\kappa 1$, which is key to leveraging cat codes for fault tolerant computation.