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What is majorization?

* Fundamental way to quantify the disorder in a distribution
* Many applications across mathematics, physics, economics
 Simple example, which biased coin is more predictable?
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Extending majorization’s reach

* Well-studied for probability distributions

* What about quasiprobabilities?
* Real-valued, normalized and possibly negative distributions

* Finite measure spaces
* Infinite measure spaces ?
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Our results

* We extend the definition of majorization to real-valued,
normalized distributions over infinite measure spaces

* We prove the equivalence of the several different
characterizations is retained

* Our definition recovers the usual ones in simpler cases

* Applying our general framework to CV Wigner distributions, we
obtain new state conversion bounds and new families of
monotones for quantum resource theories with various sets of

free operations
*And relative majorization



Equivalent Characterizations of Majorization
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Overcoming infinite zero plateau

* Informally, an integrable function over an infinite measure space
must be close to zero most of the time

* Arranging values from largest to smallest pushes all negative
values ‘to infinity’, i.e. loses all information about them

* Resolution is to use both increasing and decreasing
rearrangements —i.e. both Lorenz curves



Wigner Lorenz Curves
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* Rules out conversion with amplifying Gaussian channels,
mixtures of such channels, dilations, etc.

* Not flagged by other resource monotones



Wigner Lorenz Curves (cont.)
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Summary and future directions

* Introduce a framework for majorization of quasiprobabilities over
Infinite measure spaces

* Apply it to Wigner functions to derive new restrictions on state
conversions under various classes of operations

* Questions to this audience
* Study Lorenz curves of more interesting quantum states

* Apply to other quasiprobability representations —what are the positive
channels in that representation?

* Does this framework help assess the usefulness of states in other
contexts, for example quantum speedup ?

* Thanks and happy to take questions!
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